原子和分子光谱法:光谱概论,原子吸收原理,火焰发射分光光度计和ICP-AE(电感性耦合等离子体 - 原子 - 原子发射光谱),通过校准方法的定量,Jablonski图和荧光,杂物和磷酸化法和princlosisclies and princlosisce and Principers and Principers and Principers and-Loctiati光谱法。电化学:电化学,离子移动性,导电滴定,现代电池的背景:PB-ACID和LI ION电池,腐蚀及其保护。水处理和分析:水质的生理化学参数,水软化的外部和内部方法:碳酸盐,磷酸盐,磷酸盐,卡尔贡和胶体调节,沸石工艺,离子交换过程,用于家用的水的处理,用于家用的水,脱水的咸水:反向渗透和电力。燃料:燃料,热量价值,叶烷和辛烷值的分类,替代燃料:生物柴油,供电酒精,合成汽油,燃料电池:H2生产和储存,水分裂,火箭推进剂。聚合物的化学:聚合物的分类,聚合物的策略,分子量计算,日常生活中的聚合物,进行,无机和可生物降解的聚合物。化学中的计算机:微笑简介(简化的分子输入线 - 输入系统):方法和编码规则,微笑符号符号化学结构互换及其应用。实验室工作
摘要:量子级联激光器 (QCL) 因其灵活的设计和紧凑的体积而成为一种无处不在的中红外光源。制造具有高功率水平和良好光束质量的多波长 QCL 芯片对于许多应用而言都是非常可取的。在本研究中,我们通过在单个芯片上集成五个 QCL 增益部分阵列和阵列波导光栅 (AWG),展示了 λ ∼ 4.9 µ m 单片波长光束组合 (WBC) 红外激光源。来自切割面的光反馈使激光能够产生,而集成的 AWG 将每个增益部分的发射光谱锁定到其相应的输入通道波长,并将它们的信号在空间上组合到单输出波导中。我们的芯片具有来自公共孔径的高峰值功率,每个输入通道超过 0.6 W,在脉冲模式下运行时,边模抑制比 (SMSR) 超过 27 dB。我们的主动/被动集成方法可实现从 QCL 脊到 AWG 的无缝过渡,无需再生长或衰减耦合方案,从而实现稳健的设计。这些结果为开发适用于高光谱成像等应用的高度紧凑中红外源铺平了道路。
掺铒 GaN (Er:GaN) 准块状晶体正成为一种有前途的新型增益介质,用于在 1.5 μ m 的视网膜安全波长窗口发射高能激光器。我们报告了偏振分辨光致发光 (PL) 发射光谱研究,结果表明,激发偏振平行于 GaN c 轴 (EQ jj c Q) 的泵浦效率明显高于激发偏振垂直于 GaN c 轴 (EQ ? c Q) 的泵浦效率。这一现象是固有极性纤锌矿 GaN 晶格的直接结果,沿 GaN 的 c 轴在每个 Er 离子周围产生一个净局部场。 PL 发射光谱的温度依赖性行为可以用 GaN 中 Er 3+ 的 4 I 15/2 基态和 4 I 13/2 第一激发态子能级之间的玻尔兹曼分布来解释,从而更好地理解 1.5 μ m 附近观察到的主要发射线的起源。结果表明,可以利用 GaN 中的极化场,通过操纵激发光源的极化来增强有效 Er 激发截面。
daf-16 编码一种广泛表达的转录因子,在多种发育和生理过程中发挥作用 (Lin et al., 1997; Ogg et al. , 1997; Tissenbaum, 2018),包括在神经系统中 (Kim and Webb, 2017)。DAF-16 蛋白表现出高度动态的细胞质到核易位,过去曾使用多拷贝构建体进行可视化,这可能会产生潜在的过表达伪影(例如 (Henderson and Johnson, 2001) 中描述的那些)。为了避免这种过表达效应,生成荧光标记的 daf-16 等位基因将很有用。同样,生成 daf-16 的条件等位基因将有助于解决有关 daf-16 作用重点的许多悬而未决的问题。为了解决这两个问题,我们最近生成了一个带有 mNeonGreen 标记的 daf-16 等位基因,该等位基因还包含一个生长素诱导的降解子 (Bhattacharya 等人,2019;Zhang 等人,2015)。该等位基因 daf-16(ot853[daf- 16::mNG::AID]) 使我们能够为神经元类型特异性 daf-16 耗竭提供概念验证 (Bhattacharya 等人,2019)。该等位基因的一个问题是,由于其荧光标记 (mNeonGreen) 的发射光谱,它不能与基于 gfp 的表型读数结合使用。
本文介绍了一种在可见光谱中间接发射光谱法测定 CO 2 的系统和方法。该系统和方法通过使用微等离子体光谱仪实现,该光谱仪首先将 CO 2 转化为 CO,然后测量 560 nm 处的 CO Ångström 系统 (B 1 Σ + → A 1 Π) 的发射。实验是在混合了 N 2 和空气的 CO 2 气态样品上进行的,浓度在 0.01% 到 100% 之间。除了微等离子体光谱仪之外,还通过残余气体分析仪的质谱法监测该过程。发现 CO 2 到 CO 的转化效率非常高,在接近 100% 的选择性下达到最大值 41%。此外,CO Ångström 系统能够出色地测量 10% 以下的 CO 2 浓度,线性度为 R 2 > 0.99,预期检测限在千分之一范围内。结果中最有希望的方面是,分析是在极小的总样品量上进行的,其中流经系统的气体流量在 0.1 μ 摩尔/秒范围内。因此,本系统有望填补当前传感器技术的空白,其中廉价且易于使用的光学系统(例如非色散红外传感器)无法处理少量样品,而可以处理此类样品的质谱仪仍然昂贵、复杂且笨重。
同质 FRET 过程依赖于供体发射和受体吸收之间的光谱重叠。只有当 QD 彼此足够接近时,才会发生这种情况。这就是我们添加 APTES 将它们聚集成簇的原因。因此,从小波长到大波长的相关能量转移导致 QD 群体的发射带红移。从现象学上讲,这种红移类似于我们在胶体悬浮液中增加 QD 浓度时观察到的红移。在这种情况下,QD 不会聚集且不会相互耦合,因此它们无法实现同质 FRET。然而,鉴于它们的高浓度,内滤波效应 (IFE) 开始发挥作用。每个 QD 仍然发光,但会显著吸收其他 QD 的光。这是一种纯粹的集体自吸收现象,在整个 QD 群体的规模上,依赖于吸收和发射之间的光谱重叠 [3]。给定等式。 (S13),同源 FRET 可以正式描述为一种统计现象,涉及整个 QD 群体的吸收 A (λ) 和发射光谱 I 0 (λ) 之间的有效重叠,方式与 IFE 类似,只要 ∆ S ≳ δλ ,即 A (λ) ≈ I 0 (λ + ∆ S) 在重叠的光谱范围内(见图 S2)。出于这些原因,我们在此建议,首先,计算由于内滤波效应(IFE)引起的红移,其次,将结果推断到形式上类似的同源 FRET 情况。
自旋向充电传输的有效转化,反之亦然,这与基于自旋电子产品的检测和生成自旋电流具有主要相关性。界面的界面对此过程有明显影响。在这里,Terahertz(THz)发射光谱拷贝用于研究大约50个原型F |中的超快旋转电荷转换(S2C)由铁磁层F(例如Ni 81 Fe 19,Co或Fe)和具有强(PT)或弱(Cu和Al)旋转轨道耦合的非磁性层N组成的n双层。改变f/n界面的结构会导致振幅急剧变化,甚至导致THZ电荷电流极性的反转。非常明显的是,当n是具有小旋转霍尔角的材料时,会发现对超快电荷电流的主要界面贡献。其大小约为在F |中发现的大约20% PT参考样本。对称性参数和第一原理的计算强烈表明,界面S2C来自界面缺陷处的自旋极化电子的偏斜散射。结果突出了界面S2C偏斜散射的潜力,并提出了一种有希望的途径,以从DC到Terahertz的所有频率下量身定制的界面增强S2C。
K β x 射线发射光谱是分析 3 d 过渡金属系统电子结构及其超快动力学的有力探针。选择性增强特定光谱区域将提高这种灵敏度并提供全新的见解。最近,我们报道了使用 x 射线自由电子激光观察和分析了 Mn 溶液中 K α 放大的自发 x 射线发射以产生 1 s 芯空穴粒子数反转 [Kroll 等人,Phys. Rev. Lett. 120,133203 (2018) ]。要将这种新方法应用于化学上更敏感但更弱的 K β x 射线发射线,需要一种机制来胜过 K α 发射的主导放大。本文报告了使用两种颜色的 x 射线自由电子激光脉冲对 NaMnO 4 溶液中种子放大 K β x 射线发射的观察结果,一种用于产生 1 s 核心空穴粒子数反转,另一种用于种子放大 K β 发射。将观察到的种子放大 K β 发射信号与相同立体角中的传统 K β 发射信号进行比较,我们获得了超过 10 5 的信号增强。我们的发现是增强和控制 K β 光谱选定最终状态的发射的第一步,可应用于化学和材料科学。
摘要:过渡金属二硫化物 (TMD) 的环境降解是一系列应用中的一个关键绊脚石。我们展示了一种简单的一锅非共价芘涂层工艺,可保护 TMD 免受光诱导氧化和环境老化。芘以非共价方式固定在剥离的 MoS 2 和 WS 2 的基面上。通过电子吸收和荧光发射光谱评估 TMD / 芘的光学特性。高分辨率扫描透射电子显微镜结合电子能量损失光谱证实了广泛的芘表面覆盖,密度泛函理论计算表明 TMD 表面上有约 2-3 层的强结合稳定平行堆叠芘覆盖。在环境条件下以 0.9 mW / 4 µ m 2 照射时,对剥离的 TMD 进行拉曼光谱分析,结果显示由于 Mo 和 W 的氧化状态而产生新的强拉曼谱带。但值得注意的是,在相同的暴露条件下,TMD / 芘保持不受影响。目前的发现表明,在 MoS 2 和 WS 2 上物理吸附的芘可充当环境屏障,防止 TMD 中由水分、空气和激光照射催化的氧化表面反应。拉曼光谱证实,在环境条件下储存两年的混合材料在结构上保持不变,证实了芘不仅可以阻止氧化,还可以抑制老化,具有有益作用。
等离子体物理及其工程应用在进行血浆现象的诊断测量方面遇到了很长时间,而不会确定不扰动等离子体。Langmuir探针通常提供血浆的基本诊断,以产生血浆密度,电子温度和浮动潜力。然而,探针的物理存在可能会扰动血浆或引入等离子体体积的杂质介绍的机会。等离子体的光学诊断提供了对等离子体特性的非扰动测量值,特别是离子的可能性。研究人员已经利用了来自等离子体的自然发射光谱,并意识到可以指定可能发生光学诊断的空间位置和时间的光学诊断工具将是与背景等离子体辐射相比的巨大优势。是激光诱导的荧光(LIF)作为诊断工具的一般概述,其在等离子体处理源中的特定应用及其在此类进一步应用中的潜力。Stern和Johnson W 1 X报告了等离子体中LIF的早期使用。基本上,LIF涉及使用单模激光器用至少一个结合的电子询问等离子体离子,这可以通过激光的正确多普勒移位响应,以通过在第二光子的发射中吸收激光光子来吸收激光光子。通常,此过程涉及亚稳态电子电子的激发,当