3 助理教授,ECE 系,DSCE,班加罗尔,卡纳塔克邦 4 M.Tech。项目指导,教授兼系主任,ECE 系,DSCE,班加罗尔,卡纳塔克邦 摘要 本文简要回顾了可用于 VLSI 设计技术的 AI/ML 算法和应用。由于分析和开发可能减少由扩大工艺变异性带来的设计复杂性并缩短芯片制造周转时间的技术显然将成为纳米领域集成电路 (IC) 行业的一个问题。用于这些活动的传统方法大多是手动的,这需要时间和资源。相反,由于人工智能 (AI) 独特的学习策略,超大规模集成 (VLSI) 设计和测试可以利用各种新的自动化方法。利用自动学习算法,AI 和机器学习 (ML) 算法减少了理解和处理不同抽象级别内和跨不同抽象级别数据所需的时间和精力,从而提高了 IC 产量并加快了生产周转时间。本文研究了以前用于 VLSI 设计和生产的自动化 AI/ML 方法。本文介绍的工作是 PG (M.Tech) 学生的技术研讨会报告,这是 PG 课程第二学期每个学生必须就任何主题进行的研讨会的一部分。关键词:VLSI、设计、CMOS、芯片、晶体管 1.简介在微电子领域,CMOS 技术长期占据主导地位。在单个芯片上,制造的晶体管数量急剧增加。由于晶体管经过多代技术不断缩小尺寸,这些设备的密度和性能得到了提高,这极大地促进了微电子产业的发展。现代超大规模集成 (VLSI) 技术使得在单个芯片上实现复杂的数字系统成为可能。随着晶体管尺寸变小,半导体制造工艺的复杂性增加。随着我们越来越接近原子尺寸,简单的缩放不可避免地会走到尽头。即使这些器件很小,其性能的几个方面也会随着时间的推移而下降,例如泄漏增加、增益降低以及对制造工艺波动的敏感性增加。制造差异的急剧增加严重影响了电路的功能,导致相同尺寸的晶体管性能不一致。这会影响电路的传播延迟,其表现为随机变量,使时序收敛程序更加困难,并大大降低芯片产量。设计流程中需要采用未来技术节点的经济实惠的设计和先进的设计技术进行更精细的优化,以保持 VLSI 系统的性能趋势,以应对工艺变化增加带来的日益严峻的挑战,设计复杂性和芯片集成度。电子设计自动化 (EDA) 工具在克服设计复杂性方面的有效性
注意力缺陷多动障碍 (ADHD) 是儿童期最常见的精神健康障碍之一。最近一项对 100 多项研究的荟萃分析估计,ADHD 的全球患病率约为 3.4–5.3% ( 1 )。在中国,一项全国精神疾病调查显示,学龄儿童 ADHD 的患病率为 10.2%,而男孩的患病率相对较高 ( 2 )。典型症状是注意力不集中、多动和冲动,这些症状与年龄不相符,并且常常导致他们在以后的生活中学习成绩、工作效率和社交技能受损 ( 3 , 4 )。从实证研究来看,ADHD 的表型在人群中存在差异,可能与大脑发育过程中的遗传和神经因素有关,包括生命早期接触毒素和缺乏社会经济资源 ( 4 )。ADHD 是各种执行功能缺陷的结果; ADHD 的主要特征是缺乏行为抑制,即抑制不相关或干扰信息和冲动的能力,这会导致其他执行功能(如工作记忆和自我调节)进一步受损(3)。尽管行为异常,但在 ADHD 患者中通常可以观察到大脑的结构和功能变化,例如白质体积减少、灰质体积变小、双侧额叶和右扣带皮层局部变薄,以及功能连接减少(5,6)。近年来,脑成像技术(如磁共振成像、MRI)的快速发展使得人们可以更近距离地观察 ADHD 患者的大脑。例如,最近的研究表明,ADHD 的特征是神经网络中存在多种结构和功能异常,包括额顶颞、额小脑甚至前部边缘网络的改变(5-7)。 MRI,尤其是功能性MRI(fMRI),已广泛应用于基础医学和临床研究以及临床实践,以研究大脑的结构和功能。然而,对于儿童,尤其是非常年幼的儿童来说,这是一个巨大的挑战,因为他们必须在扫描期间长时间呆在封闭而黑暗的空间中。他们需要保持静止,因为如果他们移动,成像就不准确。此外,MRI、功能性MRI和静息MRI的成本很高。为了应对这些方法上的限制,功能性近红外光谱(fNIRS)在二十年前被引入科学界。它是一种基于光学的测量神经功能的工具。它的优点是不易受头部运动伪影的影响,并且具有非侵入式采集环境和良好的便携性(8)。fNIRS经常用于探索与ADHD相关的认知的神经基础,例如执行功能,面部表情识别和情绪调节(8-11)。静息状态功能性近红外光谱(rs-fNIRS)成像是一种自然的成像范式,与任务状态 fNIRS 相比具有许多优势(12-14)。rs-fNIRS 操作简单,在临床实践中易于操作,特别是对于难以保持稳定且倾向于移动的儿科患者。rs-fNIRS 技术可以揭示大脑网络在正常发育和精神病理状态方面的变化(12、13、15、16)。
作为抗生素的潜在替代品,硫化镉和氧化锌纳米颗粒(CDS和ZnO NPS)分别使用激光消融和直接化学过程创建。硫化镉,去离子水,硝酸锌和氢氧化钠的靶标被用作前体。使用不同的表征技术来表征CD和ZnO NP。X射线衍射用于确认CD和ZnO具有平均晶体尺寸分别为54.16 nm和29.23 nm的多晶结构。ZnO颗粒的直径为51.65 nm的密集填充2D弯曲的纳米曲线,而CDS颗粒的直径为51.65 nm,而CDS颗粒则由来自Fe-Sem图像的34.53 NM NM的球形和半球体形态组成,并具有球形和半球体形态。根据AFM的说法,ZnO和CD的平均晶粒尺寸分别为37.51 nm和79.64 nm。通过FTIR验证了生产的纳米粒子的纯度。ZnO的估计能隙为4.25 eV,CD为2.5 eV。关于革兰氏阳性和革兰氏阴性细菌菌株以及真菌菌株,CD和ZnO NP具有相关的抗微生物敏感性。与表皮链球菌和克雷伯氏菌相比,所产生的纳米粒子的抗细菌活性对金黄色葡萄球菌和大肠杆菌具有更大的抑制作用。但是,念珠菌的值较高39mm。(2024年10月17日收到; 2025年1月4日接受)关键词:CDS,ZnO激光消融,简单化学,表面形态,生物医学1.[6–8]。[10,12]。简介直径为1-100 nm的纳米颗粒(NP)近年来引起了很多关注,因为它们具有各种吸引人的光电,电气和抗细菌功能。因为细菌感染性疾病已经引起了全球关注,这是严重的健康问题,可能会对人类生活的社会,经济和医学方面产生影响。“致病性菌株的暴发和感染增加,细菌抗生素抗性,引入新的细菌突变,缺乏贫困国家的足够疫苗接种以及与医院相关的疾病是对人类的全球健康风险,尤其是儿童的全球健康风险,尤其是在几种生物上使用,包括生物疾病,包括CDS NP的诊断,包括生物疾病,包括生物诊断,并在内组织病理学。众所周知,当材料变小(到纳米级)时,它们的物理,化学和生物学特征会发生重大变化,因为其巨大的表面积,静电力的存在,随之而来的量子尺寸效应等。文献对几种重要的半导体纳米材料的制备和表征进行了详尽的报道,包括CDO,ZNS,CDS,CDSE和CDTE NPS [7,8]。由于其在批量状态下具有出色的光敏性和2.43 eV的宽带间隙能量,因此CDS NP是II-IV组中研究最多的二元硫化剂之一[9]。锌氧化物是半导体,具有较大的带隙3.37 eV。令人惊讶的是,许多调查发现ZnO-NP不会损害人类细胞。氧化锌纳米颗粒(ZnO NP)是一系列生物应用的有趣前景,因为它们的出色稳定性,生物兼容性和低毒性。ZnO纳米颗粒非常有效地针对广泛的微生物,包括细菌,病毒和真菌,因为它们具有特殊的物理化学特征。由于具有这种特征,它们是有效的抗菌剂,对微生物不胡态,并且具有
抽象的背景炎症效率为继发性脑损伤和有限的组织再生是脑内出血后有利预后的障碍(ICH)。作为炎症和脂质代谢的调节剂,肝脏X受体(LXR)具有改变小胶质细胞/巨噬细胞(M/ M)表型的潜力,并通过促进胆固醇外排和从吞噬细胞中促进胆固醇外排和回收来帮助组织修复。为支持潜在的临床翻译,在实验性ICH中检查了增强的LXR信号传导的好处。方法用LXR激动剂GW3965或媒介物处理胶原酶诱导的ICH小鼠。 在多个时间点进行了行为测试。 使用T2加权,扩散张量成像和动态对比增强的MRI序列评估病变和血肿的体积以及其他大脑参数。 染色固定的脑冷冻切片,并应用共聚焦显微镜检测LXR下游基因,M/M表型,脂质/胆固醇含有含有脂肪的吞噬细胞,少突胶质细胞谱系细胞和神经干细胞。 还使用了 Western印迹和实时QPCR。 CX3CR1 CRER:ROSA26 IDTR小鼠用于M/m-消耗实验。 结果GW3965治疗减少了病变体积和白质损伤,并促进了血肿清除。 处理过的小鼠上调LXR下游基因,包括ABCA1和载脂蛋白E,并降低了M/M的密度,显然从促炎性介绍性介绍性介绍性介绍性介绍性白介素-1β +转移到精氨酸酶1 + CD206 +调节性表型。 在GW3965小鼠中观察到较少的胆固醇晶体或髓素碎片吞噬细胞。方法用LXR激动剂GW3965或媒介物处理胶原酶诱导的ICH小鼠。在多个时间点进行了行为测试。使用T2加权,扩散张量成像和动态对比增强的MRI序列评估病变和血肿的体积以及其他大脑参数。染色固定的脑冷冻切片,并应用共聚焦显微镜检测LXR下游基因,M/M表型,脂质/胆固醇含有含有脂肪的吞噬细胞,少突胶质细胞谱系细胞和神经干细胞。Western印迹和实时QPCR。CX3CR1 CRER:ROSA26 IDTR小鼠用于M/m-消耗实验。结果GW3965治疗减少了病变体积和白质损伤,并促进了血肿清除。处理过的小鼠上调LXR下游基因,包括ABCA1和载脂蛋白E,并降低了M/M的密度,显然从促炎性介绍性介绍性介绍性介绍性介绍性白介素-1β +转移到精氨酸酶1 + CD206 +调节性表型。较少的胆固醇晶体或髓素碎片吞噬细胞。lxr激活增加了围绕围场区域中OLIG2 +PDGFRα +前体的数量和OLIG2 + CC1 +成熟的少突胶质细胞的数量,并且病变和脑膜下区域中的SOX2 +或Nestin +神经干细胞的升高。MRI结果支持GW3965的更好的病变恢复,这通过返回到功能性rotarod活性的预元值来证实。GW3965的治疗作用被CX3CR1 CRER中的M/M耗竭消除:ROSA26 IDTR小鼠。使用GW3965减少脑损伤的结论LXR激动剂,促进了m/m的有益特性,并促进了胆固醇回收的促进组织修复通讯。
量子计算具有广泛的兴趣,因为它为从素数分解[1]到非结构化搜索[2]提供了指数或多项式加速。量子计算机的自然使用是对其他量子系统的模拟,在计算化学中具有众所周知的应用[3,4]和冷凝物质物理学[5,6]。近年来已经看到了量子计算机在基于晶格的Quanty场理论(QFT)模拟中提出的应用(参见参考文献。[7,8]及其参考文献,包括量子染色体动力学的模拟(QCD),该理论描述了夸克和胶子的基本相互作用。晶格QCD非常适合研究QCD的低能量(子GEV)行为,但是晶格尺寸的计算成本的迅速增加使得QCD QCD极具挑战性,可用于模拟碰撞,以在诸如大型Hadron Collider(例如LHC)等较高的高级胶卷中探测的最短长度量表(LHC)。在这些能量下,QCD耦合常数αs变小,因此扰动计算成为选择的方法。使用量子计算机在扰动QCD中模拟硬散射过程已在很大程度上尚未探索。一种模拟量子计算机上通用扰动QCD进程的方法仍然缺失,但由于多种原因是可取的。其次,此功能还意味着量子模拟可以很好地适合对具有高质量最终状态的过程具有完全干扰效应的计算。每个贡献都可以分解为颜色部分和运动部分。This may be in part because the aims of perturbative QFT calculations differ from the aims of most quantum simulations: most quantum simulations (including lattice QCD) aim to take a known Hamiltonian and use it to perform the (unitary) evolution of a quantum system, whereas perturbative QFT calculations aim to calculate the (Hermitian, but not unitary) transition matrix describing the scattering of specified external states and hence研究基本颗粒的产生或衰减。首先,扰动QCD计算需要评估许多不可观察的中间状态的贡献,这使得这种计算使自然候选者从量子计算机操纵量子状态的折叠的能力中受益。第三,通用扰动QCD过程的量子模拟可以通过利用已知量子算法(例如量子振幅估计)提供的加速度来提高扰动QCD预测的速度和精度[9-12]。本文的目的是采取步骤使用量子计算机模拟通用扰动QCD进程。扰动QCD中的计算可以通过求和Feynman图的贡献来执行。颜色部分比运动部分更简单,并且实际上存在有效的程序[13 - 18],用于计算经典计算机上的颜色因子。尽管如此,颜色部分仍然提出了在量子计算机上模拟扰动QCD过程的一些通用挑战。1作为例如,形成量子计算机的量子门必须始终是统一的,而feynman规则(颜色和运动学部分都)描述了Feynman图的组成部分,并非完全单位。这意味着颜色部分提供了一个有用的简化设置,可以使用该设置来开发Feynman图的量子计算的框架,因此它们将成为当前工作的重点。本文的主要结果是两个量子门Q和G,它们分别代表了描述Quark-gluon和Triple-Gluon相互作用顶点的Feynman规则的颜色部分。要实施这些门,我们介绍了一个单位化寄存器U的新概念,该概念可以模拟夸克和胶子的非空间相互作用。
量子计算具有广泛的兴趣,因为它为从素数分解[1]到非结构化搜索[2]提供了指数或多项式加速。量子计算机的自然使用是对其他量子系统的模拟,在计算化学中具有众所周知的应用[3,4]和冷凝物质物理学[5,6]。近年来已经看到了量子计算机在基于晶格的Quanty场理论(QFT)模拟中提出的应用(参见参考文献。[7,8]及其参考文献,包括量子染色体动力学的模拟(QCD),该理论描述了夸克和胶子的基本相互作用。晶格QCD非常适合研究QCD的低能量(子GEV)行为,但是晶格尺寸的计算成本的迅速增加使得QCD QCD极具挑战性,可用于模拟碰撞,以在诸如大型Hadron Collider(例如LHC)等较高的高级胶卷中探测的最短长度量表(LHC)。在这些能量下,QCD耦合常数αs变小,因此扰动计算成为选择的方法。使用量子计算机在扰动QCD中模拟硬散射过程已在很大程度上尚未探索。一种模拟量子计算机上通用扰动QCD进程的方法仍然缺失,但由于多种原因是可取的。其次,此功能还意味着量子模拟可以很好地适合对具有高质量最终状态的过程具有完全干扰效应的计算。每个贡献都可以分解为颜色部分和运动部分。This may be in part because the aims of perturbative QFT calculations differ from the aims of most quantum simulations: most quantum simulations (including lattice QCD) aim to take a known Hamiltonian and use it to perform the (unitary) evolution of a quantum system, whereas perturbative QFT calculations aim to calculate the (Hermitian, but not unitary) transition matrix describing the scattering of specified external states and hence研究基本颗粒的产生或衰减。首先,扰动QCD计算需要评估许多不可观察的中间状态的贡献,这使得这种计算使自然候选者从量子计算机操纵量子状态的折叠的能力中受益。第三,通用扰动QCD过程的量子模拟可以通过利用已知量子算法(例如量子振幅估计)提供的加速度来提高扰动QCD预测的速度和精度[9-12]。本文的目的是采取步骤使用量子计算机模拟通用扰动QCD进程。扰动QCD中的计算可以通过求和Feynman图的贡献来执行。颜色部分比运动部分更简单,并且实际上存在有效的程序[13 - 18],用于计算经典计算机上的颜色因子。尽管如此,颜色部分仍然提出了在量子计算机上模拟扰动QCD过程的一些通用挑战。1作为例如,形成量子计算机的量子门必须始终是统一的,而feynman规则(颜色和运动学部分都)描述了Feynman图的组成部分,并非完全单位。这意味着颜色部分提供了一个有用的简化设置,可以使用该设置来开发Feynman图的量子计算的框架,因此它们将成为当前工作的重点。本文的主要结果是两个量子门Q和G,它们分别代表了描述Quark-gluon和Triple-Gluon相互作用顶点的Feynman规则的颜色部分。要实施这些门,我们介绍了一个单位化寄存器U的新概念,该概念可以模拟夸克和胶子的非空间相互作用。
1. 本综述旨在确定和审查疫苗接种对接种后感染 COVID-19 的人的冠状病毒 (COVID-19) 传播影响的证据。该综述包括 43 项原始研究(18 份预印本,1 份非同行评审报告)(检索时间截至 2021 年 10 月 22 日):13 项研究评估了 COVID-19 疫苗接种对 COVID-19 传播的影响,32 项研究评估了 COVID-19 疫苗接种对 COVID-19 病毒载量的影响(2 项研究评估了两种结果)。2. 13 项传播研究(均为观察性研究,所有变体)中有证据表明,完全接种疫苗的指示病例向其接触者传播 COVID-19 的几率低于未接种疫苗的指示病例,尤其是野生型和非 Delta 变体(GRADE 上具有中等确定性),并且在许多研究中这种减少是显著的(例如,传播减少了 50% 以上)。 3. 在大多数评估部分和完全接种疫苗的研究中,部分接种疫苗在减少病例传播方面的效果远不如完全接种疫苗。4. 虽然大多数传播研究都研究了野生型和非 Delta 变体并且一致,但研究 Delta 变体的 3 项研究的证据更加复杂(GRADE 确定性低)。尽管所有 3 项研究都表明完全接种疫苗的病例传播 COVID-19 的几率低于未接种疫苗的病例,但 2 项研究表明疫苗对 Delta 变体传播的有效性随着时间的推移大幅下降。此外,一项研究表明,与 Alpha 变体相比,对指示病例接种疫苗对 Delta 变体传播的效果较差。 5. 32 项病毒载量研究的证据大体支持传播研究:23 项研究了 COVID-19 野生型和非 Delta 变体的研究(GRADE 确定性为中等),通常表明完全接种疫苗的病例的 Ct 值高于未接种疫苗的病例(表明病毒载量较低),但是,对于 Delta 变体(GRADE 确定性为低)而言,证据再次更加混杂,因为虽然 16 项研究中的大多数表明完全接种疫苗和未接种疫苗的病例的 Ct 值差异很小(或没有差异),但一些研究表明完全接种疫苗的病例的 Ct 值更高,一项研究表明完全接种疫苗的病例的 Ct 值较低。 6. 一项研究调查了感染 Delta 变异 COVID-19 后病例的病毒载量随时间的变化,结果表明,接种第二剂疫苗后不久,完全接种疫苗的病例的 Ct 值比未接种疫苗的病例高得多(表明病毒载量较低),但随着时间的推移,差异变小:对于接种第二剂疫苗后 180 天或更长时间感染的患者,接种疫苗和未接种疫苗的病例的 Ct 值非常相似。这项研究也是唯一一项研究加强剂量的研究,结果表明,接种辉瑞加强剂量疫苗后感染 COVID-19 的人的 Ct 值高于未接种疫苗的病例。7.三项研究检查了完全接种疫苗和未接种疫苗的 Delta 变种病例样本的传染性,并表明传染性非常相似。8. 在几乎所有纳入的研究中(传播和病毒载量),除疫苗接种以外的其他因素可能影响结果,这可能会使结果偏向任何一个方向。大多数研究也高度异质,因此必须谨慎使用