简单总结:脑电图为大脑活动提供了宝贵的见解,具有多种医疗用途,包括诊断、监测、药物发现和治疗评估。我们提出了一种人工智能模型,该模型经过独特优化,通过直接处理原始数据来分析脑电图信号。该模型通过空间通道注意和稀疏变压器编码等专用组件捕获脑电图中复杂的空间和时间模式。经过广泛评估,我们的模型在检测脑部疾病和分类精神药物方面表现出很高的准确性。通过自动学习原始脑电图数据的表示,它可以很好地适应疾病、受试者和任务。该模型的端到端学习能力和任务多功能性构成了一个强大且广泛适用的自动脑电图分析解决方案。我们相信它有潜力显著推进基于脑电图的诊断和个性化医疗。
可持续性挑战本质上涉及对多个相互竞争的目标的考虑。帕累托边界(即所有最优解的集合,这些解不能针对一个目标进行改进,否则会对另一个目标产生负面影响)是应对可持续性挑战的关键决策工具,因为它强调了相互冲突的目标之间的内在权衡。我们的研究动机是亚马逊河流域水电战略规划,亚马逊河流域是地球上最大、生物多样性最丰富的河流系统之一,增加能源生产的需求与最大限度地减少有害环境影响的迫切要求不谋而合。我们研究了一种将水电与浮动光伏太阳能电池板 (FPV) 配对的创新战略。我们提供了一种新的扩展多树网络公式,可以考虑多种水坝配置。为了应对扩大帕累托优化框架以解决整个亚马逊河流域的多个目标的计算挑战,我们通过两项改进进一步增强了树形结构网络中帕累托边界的最先进的算法。我们引入了由子边界引起的仿射变换来计算帕累托优势,并提供了合并子树的策略,从而显著提高了优势解决方案的修剪率。我们的实验表明,在保持最优性保证的同时,速度显著提高,在某些情况下甚至提高了一个数量级以上,从而使我们能够更有效地近似帕累托边界。此外,我们的研究结果表明,当将混合水电与 FPV 解决方案配对时,帕累托边界的能量值会显著向更高的方向转变,从而有可能在减轻不利影响的同时扩大能源生产。
随着视觉变换器 (ViT) 的巨大成就,基于变换器的方法已成为解决各种计算机视觉任务的新范式。然而,最近的研究表明,与卷积神经网络 (CNN) 类似,ViT 仍然容易受到对抗性攻击。为了探索不同结构模型的共同缺陷,研究人员开始分析跨结构对抗性迁移能力,而这方面仍未得到充分研究。因此,在本文中,我们专注于 ViT 攻击,以提高基于变换器和基于卷积的模型之间的跨结构迁移能力。先前的研究未能彻底调查 ViT 模型内部组件对对抗性迁移能力的影响,导致性能较差。为了克服这个缺点,我们开展了一项激励研究,通过线性缩小 ViT 模型内部组件的梯度来分析它们对对抗性迁移能力的影响。基于这项激励研究,我们发现跳跃连接的梯度对迁移能力的影响最大,并相信来自更深块的反向传播梯度可以增强迁移能力。因此,我们提出了虚拟密集连接方法(VDC)。具体来说,在不改变前向传播的情况下,我们首先重构原始网络以添加虚拟密集连接。然后,在生成对抗样本时,我们通过虚拟密集连接反向传播更深层注意力图和多层感知器(MLP)块的梯度。大量实验证实了我们提出的方法优于最先进的基线方法,ViT模型之间的可迁移性提高了8.2%,从ViT到CNN的跨结构可迁移性提高了7.2%。
II。 傅立叶变换与计算机视觉之间的联系以分析和处理图片或视频,即计算机视觉学科,这与分析和从视觉输入中分析和提取有意义的信息有关,采用了许多数学方法。 傅立叶变换是计算机视觉的主食,作为最基本的数学方法之一。 图片可以过滤,可以提取功能,可以注册图片,并且可以借助傅立叶变换和检查其频率含量的检查来识别所有图案。 图像通常通过计算机视觉算法作为二维像素值矩阵处理。 使用傅立叶变换,我们可以通过将其从空间域转换为频域来检查图像的基本频率组件。 为此,在图像矩阵的每一行和列中分别执行傅立叶变换。 图像过滤是对计算机视觉的傅立叶变换。 噪声和其他异常在数字图像中很常见,降低了图像质量并使进一步的处理更加困难。 通过对图片进行傅立叶变换,我们可以隔离关键频率以减少其影响。 当在频域中表示图像时,可以应用过滤操作,例如高通滤波器,以带出小功能和低通滤波器,以使图像平滑并减少噪声。 逆傅里叶变换用于通过将其转换回空间域来获取过滤的图片。 [7]II。傅立叶变换与计算机视觉之间的联系以分析和处理图片或视频,即计算机视觉学科,这与分析和从视觉输入中分析和提取有意义的信息有关,采用了许多数学方法。傅立叶变换是计算机视觉的主食,作为最基本的数学方法之一。图片可以过滤,可以提取功能,可以注册图片,并且可以借助傅立叶变换和检查其频率含量的检查来识别所有图案。图像通常通过计算机视觉算法作为二维像素值矩阵处理。使用傅立叶变换,我们可以通过将其从空间域转换为频域来检查图像的基本频率组件。为此,在图像矩阵的每一行和列中分别执行傅立叶变换。图像过滤是对计算机视觉的傅立叶变换。噪声和其他异常在数字图像中很常见,降低了图像质量并使进一步的处理更加困难。通过对图片进行傅立叶变换,我们可以隔离关键频率以减少其影响。当在频域中表示图像时,可以应用过滤操作,例如高通滤波器,以带出小功能和低通滤波器,以使图像平滑并减少噪声。逆傅里叶变换用于通过将其转换回空间域来获取过滤的图片。[7]
心力衰竭是一种具有复杂临床表现的综合征。可能是由于多种原因而发生的,包括对心脏的结构损害以及其功能变化,以防止其正确地将血液泵入身体,从而使身体没有充分的循环。随着我们人口的年龄增长,心力衰竭患者的数量每年增加,一再住院,生活质量减少和其他问题。这些问题突出了需要及时诊断,治疗和预后的必要性。通过其分类来估计心力衰竭患者的严重程度在有效治疗中具有重要的临床意义。分类心力衰竭被认为是治疗它的最关键步骤。分类心力衰竭的标准是纽约心脏协会
人类脑肿瘤,更具体地说是神经胶质瘤,是最危及生命的癌症之一,通常由神经胶质干细胞异常生长引起。实际上,磁共振成像 (MRI) 模态提供不同的对比度来阐明组织特性,提供有关大脑结构的全面信息以及检测肿瘤的潜在线索。因此,多模态 MRI 通常用于诊断脑肿瘤。然而,由于获取的模态集可能因临床部位而异,脑肿瘤研究可能会遗漏一两种 MRI 模态。为了以端到端的方式解决缺失信息,我们提出了 MMCFormer,一种新颖的缺失模态补偿网络。我们的策略建立在 3D 高效转换器块之上,并使用共同训练策略来有效地训练缺失模态网络。为了确保多尺度特征一致性,MMCFormer 在编码器的每个尺度上都使用全局上下文一致性模块。此外,为了传输特定于模态的表示,我们建议在瓶颈阶段加入辅助标记,以对完整和缺失模态路径之间的交互进行建模。最重要的是,我们包括特征一致性损失,以减少网络预测中的域差距并提高缺失模态路径的预测可靠性。在 BraTS 2018 数据集上进行的大量实验证明了我们的方法与竞争方法相比的优势。实现代码可在 GitHub 上公开获取。关键词:Transformer、缺失模态、分割、MRI、医学。
微生物在塑造生态系统和生物地球化学循环中发挥着关键作用。它们错综复杂的相互作用涉及复杂的生化过程。傅里叶变换红外 (FT-IR) 光谱是一种监测这些相互作用的强大工具,可揭示微生物的组成和对环境的反应。本综述探讨了 FT-IR 光谱在微生物学领域的多种应用,重点介绍了其在微生物细胞生物学和环境微生物学中的具体用途。它强调了微生物鉴定、过程监测、细胞壁分析、生物膜检查、应激反应评估和环境相互作用研究等关键应用,展示了 FT-IR 在增进我们对微生物系统的理解方面的关键作用。此外,我们还解决了包括样本复杂性、数据解释细微差别以及与互补技术集成的需求等挑战。FT-IR 在环境微生物学中的未来前景包括广泛的变革性应用和进步。这些包括开发全面且标准化的 FT-IR 库以精确识别微生物、集成先进的分析技术、采用高通量和单细胞分析、使用便携式 FT-IR 系统进行实时环境监测以及将 FT-IR 数据纳入生态模型以预测微生物对环境变化的反应。这些创新途径有望大大提高我们对微生物及其在各种生态系统中的复杂相互作用的理解。
像 UNet 这样的监督式深度学习网络在分割脑部异常(如病变和肿瘤)方面表现良好。然而,这类方法被提出用于单模态或多模态图像。我们使用混合 UNet Transformer (HUT) 来提高单模态病变分割和多模态脑肿瘤分割的性能。HUT 由两个并行运行的管道组成,其中一个基于 UNet,另一个基于 Transformer。基于 Transformer 的管道在训练期间依赖于 UNet 解码器中间层中的特征图。HUT 网络采用 3D 脑容量的可用模态,并将脑容量嵌入体素斑块中。系统中的变压器提高了全局注意力和体素斑块之间的长程相关性。此外,我们在 HUT 框架中引入了一种自监督训练方法,以提高整体分割性能。我们证明,在中风后病变解剖追踪 (ATLAS) 数据集的单模态分割中,HUT 的表现优于最先进的网络 SPiN,Dice 得分高出 4.84%,Hausdorffi 距离得分高出 41%。HUT 在脑肿瘤分割 (BraTS20) 数据集的脑部扫描中也表现良好,并且比最先进的网络 nnUnet 的 Dice 得分高出 0.96%,Hausdorffi 距离得分高出 4.1%。