摘要 人类与致命疾病的斗争自古以来就一直在持续。科学技术在对抗这些疾病方面的贡献不容忽视,这完全归功于新方法和产品的发明,它们的尺寸范围从微米扩展到纳米。最近,纳米技术因其诊断和治疗不同癌症的能力而受到越来越多的关注。不同的纳米粒子已被用于规避与保守的抗癌输送系统相关的问题,包括其非特异性、副作用和突发释放。这些纳米载体包括固体脂质纳米粒子 (SLN)、脂质体、纳米脂质载体 (NLC)、纳米胶束、纳米复合材料、聚合物和磁性纳米载体,它们带来了抗肿瘤药物输送的革命。纳米载体提高了抗癌药物的治疗效果,在特定部位更好地积累并持续释放,提高了生物利用度,并绕过正常细胞导致癌细胞凋亡。在这篇综述中,简要讨论了癌症靶向技术和纳米粒子的表面改性,以及可能面临的挑战和机遇。可以得出结论,了解纳米医学在肿瘤治疗中的作用具有重要意义,因此,该领域的现代进展对于肿瘤患者的繁荣今天和富裕未来至关重要。
靶向药物输送系统旨在提高靶组织或器官的治疗效果,同时降低全身输送相关的脱靶毒性。磁性药物靶向已被证明是一种有效的策略,它利用磁场和氧化铁载体在体内操纵治疗剂。然而,目前磁体的有效靶向范围将这种方法限制在小动物实验或人体浅表部位。在这里,我们生产出可临床转化的磁体设计,能够增加组织对磁场和场梯度的暴露,从而增加载体的积累。首先使用简单的血管流动系统在体外评估氧化铁纳米粒子的捕获效率。其次,使用一系列不同的磁体设计在体内评估磁靶向后这些粒子的积累。我们观察到,与传统的 1 T 圆盘磁体相比,我们的定制磁体的有效靶向深度增加了 4 倍。最后,我们表明这种磁铁可以轻松扩展到人体尺寸比例,并有可能将 100 纳米粒子瞄准人体特定位置 7 厘米深处。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
在中国传统医药中,槲皮素 (QT) 在治疗哮喘、抗过敏和降低血压方面起着重要作用。最近的证据表明,QT 可以通过多种机制改善肿瘤的放射敏感性。然而,QT 的肿瘤组织靶向性差和水溶性低限制了其在癌症治疗中的应用。在此,我们设计了一种新型药物递送系统 (CQM),由内部负载 QT 的介孔二氧化硅纳米粒子 (MSN) 和外部癌细胞膜 (CM) 组成。开发的纳米平台在 X 射线照射下具有强大的抗癌作用和良好的 QT 负载特性。此外,CQM 有效地靶向肿瘤组织。体外和体内实验结果表明,开发的 CQM 药物递送系统具有良好的肿瘤靶向性并有效抑制肿瘤生长。因此,CQM 平台实现了靶向药物递送和放射治疗增敏,为癌症治疗提供了一种新思路。
心力衰竭仍然是全球的主要健康负担。尽管在阐明疾病发展背后的分子机制方面取得了巨大进展,但标准疗法却没有以同样的速度发展。多功能信号分子 Ca 2+ /钙调蛋白依赖性蛋白激酶 II (CaMKII) 近年来因其在慢性病环境中的适应不良重塑和心律失常中的核心作用而受到广泛关注。然而,这些基础科学发现尚未转化为人类患者的新疗法。本综述探讨了开发以 CaMKII 信号为靶点的转化疗法以消除慢性病环境中的病理重塑的前景和障碍。讨论了小分子设计方面的努力,以及利用新化合物递送途径和/或遗传方法来影响心脏 CaMKII 信号的替代靶向方法。这些替代策略为克服限制新疗法发展的一些挑战带来了希望。
对于晚期雌激素受体阳性乳腺癌患者,靶向治疗的不断增加提高了生存率,但关于这些患者的最佳治疗方法仍有许多需要学习。PI3K–AKT 和 mTOR 通路是乳腺癌中最常见的激活通路之一,它们在该肿瘤类型的发病机制中起着至关重要的作用,促使人们大力努力将该通路靶向特定的激酶中枢。已批准用于雌激素受体阳性晚期乳腺癌的药物包括用于治疗 PIK3CA 突变肿瘤的 PI3K 抑制剂 alpelisib,用于治疗 PIK3CA 、 AKT1 或 PTEN 发生改变的肿瘤的 AKT 抑制剂 capivasertib,以及无论突变状态如何都可以使用的 mTOR 抑制剂依维莫司。由于有不同的抑制剂可供选择,医生可能需要决定应该在何时对个别患者使用哪种疗法。在这篇评论中,我们全面总结了我们目前对这些途径和三种抑制剂的理解,并讨论了临床中治疗的最佳顺序策略,特别是在使用 CDK4/6 抑制剂后。
摘要:3DNA 有望成为一种药物载体,药物可插入其核心或连接到表面臂。将 3DNA 与靶向细胞间粘附分子 1 (ICAM-1) 的抗体偶联可导致体内肺特异性生物分布高。虽然已经研究了其他纳米载体中各个参数对 ICAM-1 靶向性的作用,但从未对 3DNA 进行过研究,也从未以能够揭示所述参数之间层次相互作用的方式进行过研究。在本研究中,我们使用 2 层和 4 层抗 ICAM 3DNA 和放射性示踪来检查小鼠的生物分布。我们发现,在饱和条件下和测试范围内,与每个载体上的抗体数量、总抗体剂量、3DNA 剂量、3DNA 大小或给药浓度相比,3DNA 上靶向抗体的密度是驱动肺靶向而非肝清除的最相关参数,这些参数影响器官中的剂量,但不影响肺特异性与肝清除率之比。数据预测,可以使用这种生物分布模式调整插入(核心负载)药物的肺特异性递送,而臂连接(表面负载)药物的递送需要仔细的参数平衡,因为增加抗 ICAM 密度会减少可用于药物负载的 3DNA 臂的数量。
摘要:神经母细胞瘤 (NBL) 是一种交感神经系统的胚胎恶性肿瘤,主要影响 5 岁以下儿童。NBL 高度异质性,范围从自发性退化到高度侵袭性疾病。预后不良的危险因素之一是受体酪氨酸激酶间变性淋巴瘤激酶 (ALK) 的异常,该酶参与神经系统的正常发育和功能。ALK 突变导致 ALK 及其下游信号通路的组成性激活,从而驱动肿瘤发生。目前已合成了多种立体 ALK 抑制剂,其中几种抑制剂已在临床上使用。主要挑战是对立体抑制剂的获得性耐药性和癌细胞在靶向治疗时的通路逃避策略。本综述将全面概述 ALK 抑制剂在高风险 NBL 中的临床应用以及新型抑制剂的潜力和局限性。由于联合治疗方案不太可能引起耐药性,因此将特别关注 ALK 抑制剂与针对下游信号通路或影响癌细胞生存和增殖的药物的联合治疗。
戴冰冰,1,12 Jason A. Hackney,4,12 Ryan Ichikawa,3 Allen Nguyen,4 Justin Elstrott,5 Luz D. Orozco,2 孙开晖,6 Zora Modrusan,6 Alvin Gogineni,5 Alexis Scherl,7 John Gubatan,8 Awal Habzion,Monica,99。 1 DNA Way,南旧金山,CA 94080,美国 2 生物信息学,Genentech,Inc. 1 DNA Way,南旧金山,CA 94080,美国 3 Biomarker Discovery OMNI,Genentech,Inc. 1 DNA Way,南旧金山,CA 94080,美国 4 OMNI Biomarker Development,Genentech,Inc. 1 DNA Way,南旧金山,CA 94080,美国 5 生物医学成像,Genentech,Inc. 1 DNA Way,南旧金山,CA 94080,美国 6 分子生物学,Genentech,Inc. 1 DNA Way,南旧金山,CA 94080,美国 7 病理学,Genentech,Inc. 1 DNA Way,南旧金山,加利福尼亚州 94080,美国 8 斯坦福大学医学院医学系胃肠病学和肝病学分部,斯坦福,加利福尼亚州 94305,美国 9 加利福尼亚大学旧金山分校 (UCSF),美国加利福尼亚州旧金山 94143,美国 N 55905,美国 11 基因泰克公司产品开发部1 DNA Way, South San Francisco, CA 94080, USA 12 这些作者贡献相同 13 主要联系人 *通讯地址: keir.mary@gene.com (MEK), yi.tangsheng@gene.com (TY)
本综述全面回顾了关于骨向性微量营养素选择的文献数据。分析表明,纳米级骨向性微量营养素(碳酸盐 Ca、Mg、Zn、Mn 和 Cu)是有广泛实际应用前景的材料。本文介绍了每种骨向性微量营养素碳酸盐的主要合成方法,以及用生物聚合物稳定它们的方法。本综述还介绍了纳米级金属碳酸盐的应用。一个重要的应用领域是医学。特别是,人们正在考虑将纳米级材料用作具有经过验证的治疗效果和靶向药物输送的药物。本综述还确定了该领域进一步研究和开发的问题和机会,强调需要优化合成参数,并探索用生物聚合物稳定骨向性微量营养素的新方法。
与 Brca1 +/+ 细胞相比,Brca1 m/m 细胞中的 LTGC 偏向性下降(图 2e、f 和扩展数据图 4c、d)。然而,在 RNA-DNA 杂交体中的靶链上和 nCas9-sgRNA-DNA 复合物中的非靶链上诱导的缺口之间,BRCA1 介导的 LTGC 偏向性抑制没有显著差异(扩展数据图 5a)。对于 nCas9-sgRNA,Watson 链和 Crick 链上的 PAM 之间的这种抑制也几乎没有改变(扩展数据图 5b)。总之,这些数据表明,链不对称加剧了 Brca1 缺陷引起的 nCas9 诱导的 LTGC 偏向性,这与