1个微生物部,北都会canyet,s/n, (B.R.); helline.forday @sib.es(E.J.-L。); (C.C.); (V.G.); ; (L.M.)山谷的Cerdanyola是西班牙3 UMR chloe.le-roy@u-bordeaux.fr(C.L.R.); (C.B. <.b。); (S.P.)4西班牙巴达罗纳(Cibersp),Avda。BORDEAUX的细菌学家部,法国波尔多F-33000西班牙奥维耶多33011中央大学医院。感染组,西班牙马洛卡的07120棕榈。
SARS-CoV-2 可通过内吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。在这里,我们描述了一种溶酶体靶向的、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒内吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100 – 150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2 WA1 及其 Omicron 变体。细胞器靶向递送是抑制病毒感染的有效方法。
SARS-CoV-2 可通过胞吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。本文我们描述了一种溶酶体靶向、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入方式进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒胞吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100-150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2-WA1 及其 Omicron 变体。这项研究表明,细胞器靶向递送是抑制病毒感染的有效方法。
SARS-CoV-2 可通过胞吞吸收感染细胞,这一过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种方法对羟氯喹口服方案效果不佳,因为脱靶效应伴有显著毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加靶点处的药物浓度。本文我们描述了一种溶酶体靶向、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入方式进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒胞吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100-150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2-WA1 及其 Omicron 变体。这项研究表明,细胞器靶向递送是抑制病毒感染的有效方法。
疟疾,特别是恶性疟原虫引起的疟疾,仍然是一个大问题,其控制受到现有药物耐药性的威胁。1 现有的最重要的抗疟药物是青蒿素类联合疗法 (ACT),其中包括速效青蒿素成分和作用较慢的伴侣药物。青蒿素能迅速杀死寄生虫,但标准的 3 天疗程可能无法消灭所有疟原虫。伴侣药物可消灭剩余的寄生虫并限制青蒿素耐药性的选择。尽管 ACT 的成分在药理学上不匹配,但它们在治疗由药物敏感寄生虫引起的无并发症疟疾方面具有显著的疗效。然而,ACT 耐药性目前在东南亚部分地区广泛存在,其表现为开始治疗后寄生虫清除延迟,是由恶性疟原虫的 Kelch (K13) 蛋白突变介导的。 2,3 此外,对 ACT 的配套药物甲氟喹 4 和哌喹 5 的耐药性已使青蒿素耐药性问题从一个主要的理论问题(因为 ACT 通常仍然有效,且只对青蒿素成分产生耐药性)转变为一个紧迫问题。例如,在柬埔寨部分地区,大多数感染恶性疟原虫的患者使用以前的国家方案双氢青蒿素-哌喹治疗无效。6
抗感染 • 主要产品包括安弗里克(注射用两性霉素B胆固醇硫酸酯复合物)、舒罗克(注射用美罗培南)、诺莫灵(阿莫西林胶囊)、仙趣(注射用头孢曲松钠)、仙吾(注射用头孢唑林钠)、中诺立信(注射用头孢呋辛钠)、维红(阿奇霉素片/胶囊/肠溶片、注射用阿奇霉素)