许多误差校正代码的解码器都使用对数 - 样比率(LLR)作为输入,其中涉及噪声的概率密度函数(PDF)。在冲动的噪声中,噪声的PDF无法以封闭形式访问,只能通过非常复杂的数值计算获得。因此,二进制相移键合(BPSK)的LLR计算太复杂了。对于高阶调制而言,它变得更加复杂。此外,随着调制顺序的增加,LLR计算复杂性会增长。我们工作的主要贡献在于LLR近似高阶调制及其使用监督机器学习的估算,而无需先验噪声分布模型。为此,我们提出了两种方法,以使用监督的机器学习来近似LLR值,以实现高阶调制符号。第一种方法也可以用于BPSK调制符号。与第一种方法相比,第二种方法旨在以更简化的方式近似高阶调制符号的LLR。对于两种方法,我们使用线性回归算法在已知噪声通道条件下估算了近似LLR的参数。为了估算这些参数而在没有噪声分布模型的事先了解的情况下,我们使用二进制逻辑回归算法。我们的模拟集中在第二种提出的方法上,以估计噪声分布未知的LLR。所提出的LLR估计显示出与使用精确LLR函数获得的相当性能。为4个sask(振幅偏移键)调制方案提供了结果,其中假定接收器的噪声范围从高斯到高度冲动的模型。
当协变量p的尺寸可以达到样本量n的恒定分数时,我们考虑测试单个系数是否等于线性模型中的问题。在这个制度中,一个重要的主题是提出具有有限型构图的有效尺寸控制的测试,而无需噪声遵循强烈的分布假设。在本文中,我们提出了一种称为剩余置换测试(RPT)的新方法,该方法是通过将回归残差投射到原始设计矩阵和置换设计矩阵的柱子空间的空间正交中来构建的。rpt可以在固定设计下以可交换的噪声在固定设计下实现有限的人口尺寸有效性,每当P 此外,对于重型尾部噪声, rpt均具有渐近强大的功能,该噪声(1 + t)的订单矩至少在t∈[0,1]中至少属于n -t/(1 + t)阶时。 我们进一步证明了这种信号大小的要求在最小值意义上本质上是最佳的速率。 数字研究结合了RPT在具有正常和重尾噪声分布的各种模拟设置中表现良好。rpt均具有渐近强大的功能,该噪声(1 + t)的订单矩至少在t∈[0,1]中至少属于n -t/(1 + t)阶时。我们进一步证明了这种信号大小的要求在最小值意义上本质上是最佳的速率。数字研究结合了RPT在具有正常和重尾噪声分布的各种模拟设置中表现良好。数字研究结合了RPT在具有正常和重尾噪声分布的各种模拟设置中表现良好。
在安全 - 关键设置中运行的动态系统的控制器必须解释随机干扰。这种干扰通常被建模为动态系统中的过程噪声,并且常见的假设是潜在的分布是已知和/或高斯。但是,在实践中,这些假设可能是不现实的,并且可能导致真实噪声分布的近似值差。我们提出了一种新型控制器合成方法,该方法不依赖于噪声分布的任何明确表示。特别是,我们解决了计算一个控制器的问题,该控制器可在安全达到目标时提供概率保证,同时避免了状态空间的不安全区域。首先,我们将连续控制系统抽象为有限状态模型,该模型通过离散状态之间的概率过渡捕获噪声。作为关键贡献,我们根据有限数量的噪声样本来调整方案方法的工具,以计算这些过渡概率的近似正确(PAC)。我们在所谓的间隔马尔可夫决策过程(IMDP)的过渡概率间隔中捕获了这些界限。此IMDP具有用户指定的置信度概率,可抵抗过渡概率的不确定性,并且可以通过样本数量来控制概率间隔的紧密度。我们使用最先进的验证技术在IMDP上提供保证,并计算一个保证将这些保证置于原始控制系统的控制器。此外,我们开发了一种量身定制的计算方案,该方案降低了IMDP上这些保证的合成的复杂性。现实控制系统上的基准测试显示了我们方法的实际适用性,即使IMDP具有数亿个过渡。
扩散模型是基于马尔可夫过程的生成模型家族。在其前进过程中,他们逐渐向数据添加噪声,直到变成完整的噪声为止。在向后过程中,数据逐渐从噪声中逐渐发出。在本教程论文中,充分说明了扩散概率模型(DDPM)。详细简化了其可能性的变异下限,分布的参数和扩散模型的损耗函数。引入了对原始DDPM的一些模型,包括非固定的协方差矩阵,减少梯度噪声,改善噪声时间表以及非标准高斯噪声分布和条件扩散模型。最后,解释了噪声表位于连续域中的随机差异方程(SDE)的连续噪声时间表。
本文研究了一种联合估计基于能量的模型和基于流的模型的训练方法,其中两个模型基于共享的对抗值函数进行迭代更新。该联合训练方法具有以下特点:(1)基于能量的模型的更新基于噪声对比估计,流模型作为强噪声分布。(2)流模型的更新近似地最小化了流模型与数据分布之间的 Jensen-Shannon 散度。(3)与生成对抗网络(GAN)估计由生成器模型定义的隐式概率分布不同,我们的方法估计数据上的两个显式概率分布。使用所提出的方法,我们证明了流模型的综合质量的显著改进,并展示了通过学习到的基于能量的模型进行无监督特征学习的有效性。此外,所提出的训练方法可以轻松适应半监督学习。我们取得了与最先进的半监督学习方法相媲美的成果。
最深层生成建模中的最新技术具有利用马尔可夫生成过程,以更结构化和灵活的方式学习复杂的高维概率分布[17]。通过将马尔可夫链方法与深层神经体系结构整合在一起,这些方法旨在利用深网的代表力,同时维持可聊天且理论上扎根的训练程序。与早期生成模型相反,这些模型在很大程度上依赖于直接的最大似然估计或对抗性目标,此类方法采用了迭代的随机变换(通常以马尔可夫的更新表示)来逐渐将初始噪声样本逐渐从所需的目标分布中绘制出来。di效率和流量匹配模型代表了两种突出的生成方法类别,这些方法通过一系列连续转换来结构数据样本。di效率模型[6,13]引入了一个向前的和反向降级过程,通过学习在每个步骤中撤消增量的噪声损坏,将简单的噪声分布逐渐将简单的噪声分布重新定位到复杂的目标分布中。流量匹配模型[10,11,12]直接学习连续的时间变换,这些转换将基本分布转换为规定的流量字段下的目标分布。两个家庭都从良好的可能性和稳定的培训目标中受益,从而使理论上的见解更清晰,样本质量提高了,并且通常比以前的方法(例如gans)更可靠[3,5]。生成器匹配[7]是一个框架,可以在artrary状态空间上使用Markov进程来构建生成性建模。此框架允许以两种方式组合不同的马尔可夫进程:马尔可夫叠加和通过组合单峰发生器创建多模式生成模型。在这项工作中,我们旨在利用生成器匹配框架提供详细的理论比较,并将其匹配模型和流量匹配模型进行详细的理论比较。我们表明,我们的目的是提供生成器匹配的概述,如何连接到分解和流量匹配模型以及某些Markov生成过程的特定属性如何使它们比其他过程更强大。
大多数现有的扩散模型准确性的理论研究,尽管很重要,但假设得分函数已近似于一定的精度,然后使用此先验绑定来控制发电的错误。本文相反,对整个生成过程(即培训和采样)提供了第一个定量的理解。更确切地说,它对梯度下降下的脱氧分子分数进行了非质合分析分析。此外,还提供了方差爆炸模型的精制采样误差分析。这两个结果的组合产生了完整的误差分析,该分析阐明了(但这一次,理论上)如何设计训练和采样过程以进行有效产生。例如,我们的理论意味着偏爱噪声分布和训练中的减肥权重,这些训练与Karras等人中使用的偏爱。[30]。它还提供了对抽样时间和方差时间表的选择的观点:当分数经过良好的训练时,Song等人的设计。[46]更可取,但是当训练较少时,Karras等人的设计。[30]变得更加可取。
语音情感识别(SER)是任何人类机器相互作用的必不可少的组成部分,并启用构建善解人意的语音用户界面。在与基于语音的呼叫中心(基于语音的呼叫中心)一样,当一个人与机器或代理互动时,在嘈杂环境中准确识别情绪的能力在实践场景中很重要。在本文中,我们提出了基于加强学习(RL)的数据增强技术,以构建强大的SER系统。RL中使用的奖励函数启用选择性噪声分布在不同的频带上以进行数据增强。我们表明,所提出的基于RL的增强技术优于最近提出的基于随机选择的技术,用于噪声稳健的SER任务。我们将IEMOCAP数据集与四个情绪类别类别一起验证所提出的技术。更重要的是,我们在跨语料库和跨语言场景中测试SER系统的噪声稳健性。索引术语:语音情绪识别,稳健性,选择性数据增强,强化学习。
自旋噪声光谱正在成为一种强大的技术,用于研究各种自旋系统的动力学,甚至超越其热平衡和线性响应。在此背景下,我们展示了一种非标准模式的自旋噪声分析,应用于由 Bell-Bloom 原子磁力仪实现的非平衡非线性原子系统。由外部泵驱动并进行参数激发,该系统已知会产生噪声压缩。我们的测量不仅揭示了磁共振时原子信号正交的噪声分布的强烈不对称性,而且还提供了对其产生和演化背后机制的洞察。特别是,识别了光谱中的结构,允许研究噪声过程的主要依赖性和特征时间尺度。获得的结果与参数诱导的噪声压缩兼容。值得注意的是,即使在宏观原子相干性丧失的状态下,噪声谱也能提供有关自旋动力学的信息,从而有效提高测量的灵敏度。我们的信函推广自旋噪声谱作为一种多功能技术,用于研究各种自旋磁传感器中的噪声压缩。
摘要 - 近年来,在所谓的可认证感知方法的发展中取得了显着进步,这些方法利用半闪烁,凸出放松,以找到对机器人技术中的感知问题的全球最佳选择。然而,其中许多放松依赖于简化促进问题制定的假设,例如各向同性测量噪声分布。在本文中,我们探讨了矩阵加权(各向异性)状态估计问题的半决赛松弛的紧密性,并揭示了其中潜伏在其中的局限性:基质加权因素会导致凸的松弛因失去紧密度。特别是我们表明,矩阵权重的本地化问题的半决赛松弛仅对于低噪声水平可能很紧。为了更好地理解这个问题,我们引入了状态估计的后验不确定性与通过凸面重新获得的证书矩阵之间的理论联系。考虑到这种联系,我们从经验上探讨了导致这种损失的因素,并证明可以使用冗余约束来恢复它。作为本文的第二项技术贡献,我们表明,当考虑矩阵重量时,不能使用标量加权大满贯的状态放松。我们提供了一种替代配方,并表明其SDP松弛并不紧密(即使对于非常低的噪声水平),除非使用特定的冗余约束。我们在模拟和现实世界数据上证明了制剂的紧密度。