寻求规划许可,以在四楼楼层安装填充扩展,以替换当前的脊屋顶,并提供额外的办公地板空间,在第五楼的屋顶馆扩展以及屋顶露台。还寻求植物设备和相关的卢布斯的许可,以及对立面的一楼入口和翻新的修改。已经从庞森比露台和约翰·伊斯利普街(John Islip Street)的邻近居民那里收到了异议,该理由是拟议的扩展将导致封闭感,光线丧失,隐私权丧失以及造成光溢出的伤害。还引起了人们的关注,提议的屋顶露台会导致噪声干扰,并且由于俯瞰的增加而导致了进一步的隐私权。评论还引起了人们的关注,即服务和访问安排将导致干扰,以及在施工过程中的作品也会引起干扰。考虑到提出的担忧,Cllr。S.短和Cllr。D. Harvey已要求在计划委员会中审议提案。在这种情况下的主要考虑因素是:
协作感知允许在多个代理(例如车辆和基础)之间共享信息,以通过交流和融合来获得对环境的全面看法。当前对多机构协作感知系统的研究通常会构成理想的沟通和感知环境,并忽略了现实世界噪声的效果,例如姿势噪声,运动模糊和感知噪声。为了解决这一差距,在本文中,我们提出了一种新颖的运动感知robus-Busban通信网络(MRCNET),可减轻噪声干扰,并实现准确且强大的协作感知。MRCNET由两个主要组成部分组成:多尺度稳健融合(MRF)通过驱动跨语义的多尺度增强的聚集到不同尺度的融合特征,而运动增强机制(MEM)捕获运动上下文,以补偿动作对物体引起的信息,从而解决了姿势噪声。对流行的协作3D对象检测数据集的实验结果表明,在噪声方案中,MRCNET优于使用较少的带宽感知性能的噪声方案。我们的代码将在https://github.com/indigochildren/collaborative-ception-mrcnet上进行重新释放。
抽象准确地定位了3D声音源并估算其语义标签(其中可能不可见,但假定源位于场景中物体的物理表面上)具有许多真实的应用,包括检测气体泄漏和机械故障。在这种情况下,视听弱相关性在得出创新方法时提出了新的挑战,以回答是否或如何使用交叉模态信息来解决任务。朝着这一目标,我们建议使用由针孔RGB-D摄像头和共面四通道麦克风阵列(MIC-ARRAY)组成的声学相机钻机(MIC-Array)。通过使用此钻机来记录来自多视图的视听信号,我们可以使用跨模式提示来估计声源3D位置。特别是,我们的框架Soundloc3d将任务视为集合预测问题,集合中的每个元素都对应于潜在的声源。鉴于视听弱相关,首先是从单个视图mi-crophone阵列信号中学到的集合表示,然后通过主动合并从多视rgb-d图像揭示的物理表面提示来确认。我们证明了Soundloc3d在大型模拟数据集上的效率和优势,并进一步显示了其对RGB-D测量不准确性和环境噪声干扰的鲁棒性。
摘要:近年来,越来越多的框架已应用于脑部计算机间技术技术,基于脑电图的机车成像(MI-EEG)正在迅速发展。但是,提高MI-EEG分类的准确性仍然是一个挑战。提出了一个深入的学习框架,即提议解决非平稳性质,激发发生的时间定位以及本文中MI-EEG信号的频段分布特征来解决非平稳性质。首先,根据C3和C4通道之间的逻辑对称关系,MI-EEG信号的时频图像扣除(IS)的结果用作分类器的输入。它既降低了冗余,又增加了输入数据的特征差异。第二,注意模块被添加到分类器中。作为基本分类器构建了卷积神经网络,并通过引入卷积块注意模块(CBAM)来自适应提取有关MI-EEG信号出现的时间位置和频率分布的信息。这种方法减少了无关的噪声干扰,同时增加了模式的鲁棒性。在BCI竞争IV数据集2B上评估了框架的性能,该数据集2B,平均准确性达到79.6%,平均KAPPA值达到0.592。实验结果验证了框架的可行性,并显示了MI-EEG信号分类的性能提高。
摘要:天基目标监视对航天安全具有重要意义。然而,随着空间环境的日益复杂,恒星目标和强噪声干扰给空间目标检测带来了困难。同时,由于资源限制,星载处理平台难以兼顾实时性和计算性能。异构多核架构具备相应的处理能力,为天基应用提供了兼具实时性和计算性能的硬件实现平台。本文首次提出了一种光学图像序列中空间目标的多阶段联合检测与跟踪模型(MJDTM)。该模型结合改进的局部对比度法和卡尔曼滤波对潜在目标进行检测和跟踪,并利用运动状态的差异对恒星目标进行抑制。然后,建立了基于现场可编程门阵列(FPGA)和数字信号处理器(DSP)的异构多核处理系统,作为天基图像处理系统。最后,在上述图像处理系统上对MJDTM进行了优化和实现。使用模拟和实际图像序列进行的实验检验了MJDTM的准确性和效率,其检测概率为95%,而误报率为10 −4 。实验结果表明,该算法硬件实现仅需22.064 ms即可检测出1024×1024像素图像中的目标,满足天基监视的实时性要求。
抽象作为实际包装场景中的抓地力行为很容易受到各种干扰的影响,视觉抓握预测系统遭受了稳健性和检测准确性低的差。在这项研究中,已经提出了一个以线性全球注意机制为基础的智能机器人抓手框架(RTNET),以实现在实际包装工厂场景中实现高度稳健的机器人掌握的预测。首先,为了减少计算资源,在机器人抓握过程中已经开发了一种优化的线性注意机制。然后,已对本地窗口转换算法进行了调整,以收集功能信息,然后通过向上和下采样的层次设计集成全局功能。为了进一步改善开发的框架,可以通过减轻噪声干扰的能力,建立了一种自称的特征体系结构,以增强其强大的学习能力。此外,已经生成了真正的操作环境中的握把数据集(RealCornell),以实现对真实抓地力的过渡。为了评估所提出的模型的性能,在Cornell数据集,实核数据集和实际场景上对其掌握的预测进行了实验检查。结果表明,RTNET在Cornell数据集上的最大准确度为98.31%,在复杂的RealCornell数据集上达到了93.87%。在考虑实际包装情况下,所提出的模型还证明了在抓住检测方面的准确性和鲁棒性水平很高。综上所述,RTNET对包装行业的机器人握把的高级部署和实施提供了宝贵的见解。
摘要:在智能运输中,辅助驾驶取决于来自各种传感器的数据集成,尤其是LiDAR和相机。但是,它们的光学性能会在不利的天气条件下降低,并可能损害车辆安全性。毫米波雷达可以更经济地克服这些问题,并得到了重新评估。尽管如此,由于噪声干扰严重和语义信息有限,开发准确的检测模型是具有挑战性的。为了应对这些实际挑战,本文提出了TC – radar模型,这是一种新颖的方法,该方法协同整合了变压器的优势和卷积神经网络(CNN),以优化智能运输系统中毫米波雷达的传感潜力。这种集成的基本原理在于CNN的互补性质,该性质擅长捕获局部空间特征和变形金刚,这些特征在数据中擅长建模长距离依赖性和数据中的全局上下文。这种混合方法允许对雷达信号的更强大和准确的表示,从而提高了检测性能。我们方法的关键创新是引入交叉注意(CA)模块,该模块有助于网络的编码器和解码器阶段之间的高效和动态信息交换。此CA机制可确保准确捕获和传输关键特征,从而显着提高整体网络性能。此外,该模型还包含密集的信息融合块(DIFB),以通过整合不同的高频局部特征来进一步丰富特征表示。此集成过程确保了关键数据点的彻底合并。在Cruw和Carrada数据集上进行的广泛测试验证了该方法的优势,模型的平均精度(AP)为83.99%,平均相交(MIOU)的平均交点为45.2%,表明了鲁棒的雷达感应功能。
摘要 - 准确的工作量和资源预测是为了实现积极,动态和自适应资源分配,用于构建具有成本效益,能源良好和绿色云数据中心(CDC),为用户提供令人满意的优质服务,并为云提供者提供高收入。这很具有挑战性,因为CDC中急剧增加和大规模的工作量和资源使用的模式随时间而变化显着。当前的预测方法通常无法处理隐式噪声数据,并在工作量和资源时间序列中捕获非线性,长期和短期和空间特征,从而导致预测准确性有限。为解决这些问题,这项工作设计了一种名为VSBG的新型预测方法,该方法无缝且创新地结合了变分模式分解(VMD),Savitzky Golay(SG)滤波器(SG)滤波器,双向长期短期内存(LSTM)和GRID LSTM和GRID LSTM和GRID LSTM,以预测工作量和资源在CDC中的工作量和资源使用。vsbg在执行其预测之前,以四步骤的方式以四步方式整合VMD和SGFURTER。VSBG利用VMD将非机构工作负载和资源时间序列分为多种模式函数。然后,在VSBG中,这项工作设计了二次惩罚,用拉格朗日乘数将其最小化,并采用对数操作和SG滤波器来平滑第一个模式功能,以消除噪声干扰。最后,VSBG首次系统地捕获了具有两个Bilstm层的流量和复杂时间序列数据的深度和时间特征,在此之间,GridLSTM层在其中,从而准确地预测了CDC中的工作量和资源。具有不同现实世界数据集的广泛实验证明,VSBG在预测准确性和收敛速度上的整体最新算法都优于整体。