目前,噬菌体的抗菌和治疗效果有限,主要是由于噬菌体抗性的快速出现以及大多数噬菌体分离株无法结合和感染多种临床菌株。在这里,我们讨论了如何通过基因工程的最新进展来改进噬菌体疗法。首先,我们概述了如何设计受体结合蛋白及其相关结构域以重定向噬菌体的特异性并避免抗性。接下来,我们总结了如何将噬菌体重新编程为原核基因治疗载体,以递送抗菌“有效载荷”蛋白(例如序列特异性核酸酶)以靶向复杂微生物群中的特定细胞。最后,我们描述了大数据和新型人工智能驱动的方法,这些方法可能会指导未来改进合成噬菌体的设计。
肠道微生物组的变化在同种异体造血细胞移植(Allo-HCT)1-6后,在急性移植疾病与宿主病(AGVHD)的发病机理中具有关键作用。但是,尚未确定安全解决肠道营养不良的有效方法。肠道肠球菌在肠道中的扩张与营养不良有关,已被证明是AGVHD 7-10的危险因素。在这里,我们分析了Allo-HCT患者的肠道微生物组,并发现粪肠球菌通过形成生物膜而不是通过获得药物耐药基因来逃避消除并在肠中增殖。我们从粪便样品中分离了细胞溶素阳性高度致病性的粪肠球菌,并通过分析细菌性全基因组测序数据来鉴定出源自粪肠球菌特异性噬菌体的抗粪肠球菌酶。在体外和体内,抗菌酶对粪肠球菌的生物膜具有裂解活性。此外,在AGVHD诱导的gnotobirotic小鼠中,与粪肠球菌或患者粪便样品定殖的特征是以肠球菌占主导地位的特征,肠道胞糖蛋白阳性大肠杆菌的水平降低并在组中与E. faecal Sencals相比大大降低,并将其与Faecal Senters进行了显着增强。因此,施用噬菌体衍生的抗菌酶,该酶是针对生物膜形成的致病性大肠杆菌(使用现有抗生素很难消除的)可能提供了一种防止AGVHD的方法。
噬菌体疗法是一种潜在的抗生素耐药性感染疗法,但在美国不像世界其他地区那样普遍使用。噬菌体疗法是前苏联和俄罗斯治疗细菌感染的历史实践。由于噬菌体自然存在于环境中,因此只有经过基因工程的合成噬菌体才能获得制药公司的专利,这使得在美国很难融入临床护理。但是,抗生素耐药性和生物技术的最新进展的日益增长的成本正在促使美国政府机构与工业合作,以支持开发合成噬菌体以打击抗生素耐药性。尽管很少有噬菌体疗法临床试验在过去的第二阶段进行了进展,但进一步发展的潜力令人难以置信。本综述通过评估噬菌体耐药性的风险与其潜在的益处,作为针对细菌耐药机制并提高抗生素易感性的有效产品,评估了美国噬菌体疗法的前景。
病毒调节微生物群落的多样性和活性。然而,对它们在流细菌生物膜群落结构中的作用知之甚少。在这里,我们介绍了有关瑞士三种横向冰山的各种流病毒群落多样性和组成的见解。冰期流的特征是极端的环境条件,包括近冻结温度和超寡聚营养。这些条件选择了几个但适应良好的细菌进化枝,这些进化枝在生物膜群落中占主导地位,并通过微生物菌株占据了壁ni。我们使用元基因组测序揭示了这些流中各种生物膜病毒组合。在不同的流量和流中,病毒群落组成与细菌宿主的组成紧密结合,细菌宿主的宿主是由一般高的宿主特定城市强调的。将噬菌体相互作用的预测与辅助代谢基因(AMG)相结合,我们确定了通过感染微生变化枝成员的噬菌体共享的特定AMG。我们的工作为更好地理解细菌之间的复杂相互作用和噬菌体在一般情况下的噬菌体和噬菌体之间提供了一步。
限制性片段。为了制备微克量的 Hin 375、Hin 550 和 Hae 790(见图 1),将含有示踪量 lambda [32p]_ DNA(2 X 106 cpm)的 5 mg 纯化 lambda DNA 用 Hin(7)或 Hae(6)消化,乙醇沉淀,重悬于 500 ul DNA 缓冲液(5 mM NaCi、10 mM Tris-HCl,pH 7.4、1 mM EDTA)中,在含有 TBE(1)缓冲液的 3.5% 聚丙烯酰胺凝胶(6 mm X 20 cm X 40 cm)上以 320 V 电泳 23 小时。通过放射自显影定位含有适当限制性片段的凝胶部分,切除,并通过苯酚提取去除 DNA(10)。如前所述,从含有 32P 的 DNA 中分离出高比活度标记的限制性片段(2)。通过聚丙烯酰胺凝胶电泳确定每个片段的链长(1、2)。
抽象的肥厚疤痕(HS)是一种斑块斑块和硬性皮肤病变,可能会对患者引起身体,心理和化妆品挑战。三秒乙醇酮(TA)的感染内注射通常在临床实践中使用,这会导致HS组织中难以忍受的疼痛和不均匀的药物递送。在这里,我们开发了一个纸电池驱动的离子电池驱动的微针贴片(PBIMNP),用于HS的自我管理。通过将纸电池作为离子电池的电源来实现PBIMNP的高积分。PBIMNP的透皮药物输送策略合并了微对基和离子噬菌体技术,涉及“按压和戳戳,相变,扩散和离子噬菌体”,可以积极地将90.19%的药物递送到HS组织中,具有出色的体外药物渗透性。PBIMNP给药有效地降低了mRNA和蛋白质水平,导致TGF-β1和Col I与HS形成相关的表达降低,证明其在HS处理中的效率。微针和可穿戴设计赋予PBIMNP,作为HS治疗自我管理的高度有希望的平台。
体内噬菌体显示是一种用于识别有机或疾病的血管归巢肽的方法,用于靶向药物。对于目标分子的性质和身份而言,这是不可知论的。当前的体内生物植物缺乏内置机制,无法选择能够进行血管归巢的肽,这也将能够组织渗透到组织实质中的治疗相关细胞。在这里,我们将体内噬菌体显示与基于微透析的实质恢复和高通量测序相结合,以选择除血管归巢外,还可以促进渗出和组织穿透。我们首先在皮肤伤口中证明了该方法可以选择性地将已知的归巢肽与具有额外组织渗透能力的肽分开。筛查肽库中的肽鉴定在血管性和糖尿病伤口中的血管外肉芽组织中鉴定出肽,以及视网膜病中的视网膜屏障 - 视网膜屏障。我们的工作表明,体内噬菌体显示与微透析结合使用,可用于发现能够渗出和组织渗透的血管归巢肽的发现。
某些病毒(如带尾噬菌体和单纯疱疹病毒)通过强大的环状分子马达将双链 DNA 包装到空的衣壳中。噬菌体 Φ 29 的 DNA 包装马达的高分辨率结构和力测量表明,其五个 ATPase 亚基相互协调 ATP 水解,以维持环上 DNA 易位步骤的正确循环序列。在这里,我们探索 Φ 29 马达如何通过跨亚基相互作用定时关键事件(即 ATP 结合/水解和 DNA 抓取)来调节易位。我们使用与 DNA 结合的亚基二聚体作为我们的模型系统,这是一个最小系统,仍然可以捕捉完整五线运动复合体的构象和跨亚基相互作用。全 ATP 和混合 ATP-ADP 二聚体的分子动力学模拟表明,一个亚基的核苷酸占有率通过改变其催化谷氨酸接近 ATP 的伽马磷酸盐的自由能景观,强烈影响其水解相邻亚基中 ATP 的能力。具体而言,一个 ATP 结合亚基会提供反式残基,从而在空间上阻断相邻亚基的催化谷氨酸。当第一个亚基水解 ATP 并与 ADP 结合时,这种空间障碍就会得到解决。这种阻碍机制得到了功能性诱变的支持,并且似乎在几个 Φ 29 亲属中是保守的。对我们的模拟进行相互信息分析,揭示了通过反式阻断残基的亚基间信号通路,这些通路允许相邻亚基的结合口袋之间进行感知和通信。这项工作表明,通过新的反式亚基相互作用和通路,亚基之间的 DNA 易位事件的顺序得以保留。
微病毒科 (Microviridae) 的小型环状单链 DNA 病毒在所有生态系统中都很普遍且多样。它们的基因组通常介于 4.3 到 6.3 kb 之间,最近从海洋 Alphaproteobacteria 中分离出的一种微病毒是已知的最小 DNA 噬菌体基因组(4.248 kb)。有人提出用一个亚科——Amoyvirinae——来对这种病毒以及其他相关的感染 Alphaproteobacteria 的噬菌体进行分类。本文,我们报告了在来自各种水生生态系统的宏组学数据集中发现的 16 个完整的微病毒基因组,它们的基因组明显小于(2.991-3.692 kb)已知的基因组。系统发育分析表明,这 16 个基因组代表两组相关但又截然不同的新型微病毒群——amoyvirus 是它们已知的最亲近的亲属。我们认为这些小型微病毒是两个暂时命名为 Reekeekeevirinae 和 Roodoo- doovirinae 的亚科的成员。由于已知的微病毒基因组编码了许多重叠和重印基因,而这些基因无法被基因预测软件识别,因此我们开发了一种新方法,根据蛋白质保守性、氨基酸组成和选择压力估计来识别所有基因。令人惊讶的是,每个基因组只能识别出四到五个基因,重印基因的数量低于 phiX174 中的基因。因此,这些小基因组往往具有较少的基因数量和较短的每个基因长度,从而没有留下可以容纳重印基因的可变基因区域的空间。更令人惊讶的是,这两个 Microviridae 组具有特定且不同的基因内容,以及其保守的蛋白质序列的巨大差异,突出表明这两组相关的小基因组微病毒使用非常不同的策略来用如此少的基因完成其生命周期。这些基因组的发现以及对其基因组内容的详细预测和注释,扩展了我们对自然界中ssDNA噬菌体的理解,也进一步证明了这些病毒在漫长的进化过程中探索了广泛的可能性。
AcrIIA3 可恢复 CRISPR3 免疫菌株对噬菌体 2972 的敏感性。 (A)将 10 倍稀释的噬菌体 2972(从左到右为 10 0 至 10 ‐ − 7)点在噬菌体敏感菌株 S. thermophilus DGCC7710 及其 CRISPR 免疫衍生物上,这些菌株携带空载体 pTRKL2 (EV) 或表达 AcrIIA3 (AcrIIA3 CHPC640 ) 或 AcrIIA5 (AcrIIA5 D1126 ) 的载体。我们在干覆盖层上点了 5 μl 每种噬菌体稀释液。显示了至少三个生物学重复的代表性图像。 (B)与仅携带空载体的菌株相比,携带 Acr(未免疫、免疫或 CRISPR 免疫)的菌株噬菌体 2972 滴度的恢复倍数。误差线显示平均值±SD(n=3个生物学重复)。