•biguanide•二甲双胍葡萄脂•磺酰尿酶•糖糖尿病,微米酶•糖微生物糖糖酶,糖•玻璃脂酰胺酰胺•glipizide•glipizide glipizide•glipizide•tolazamide Orinose•tolazamide tolazamide tolazamide•tolazamide•氯化•氯化二氧化二氧化二氧化固醇氧化二氧化二氧化二氧化固醇氧化二氧化固醇蛋白酶 - 抗氧化二氧化二氧化氢前糖•米格列醇糖•噻唑烷二酮•吡格列酮Actos•罗马列酮阿avandia•大litinides•repaglinide prandin•nateginide starlix•二肽基肽酶-4(4(dpp -4 linagliptin Tradjenta • Insulins • insulin aspart Fiasp, Novolog • insulin degludec Tresiba • insulin detemir Levemir • insulin glargine Basaglar, Lantus, Toujeo • insulin isophane (NPH) Humulin N, Novolin N • insulin lispro Admelog, Humalog • insulin regular Humulin R, Novolin R • Other Supplies • Injection kits • Glucose test strips • • metformin/sitagliptin Janumet • metformin/repaglinide PrandiMet • metformin/saxagliptin Kombiglyze XR • metformin/glyburide Glucovance • metformin/rosiglitazone Avandamet
过氧化物酶体增殖激活受体 γ (PPAR γ ) 属于核受体家族,可作为脂质传感器。PPAR γ 是一组称为噻唑烷二酮 (TZD) 的胰岛素增敏剂的靶点,这些药物可调节参与葡萄糖和脂质代谢的基因以及调节其他组织代谢功能的脂肪因子的表达。非酒精性脂肪性肝病 (NAFLD) 在世界范围内患病率很高,在肥胖和胰岛素抵抗患者中患病率甚至更高。TZD 介导的 PPAR γ 激活可以作为 NAFLD 的良好治疗方法,因为 TZD 在体外表现出抗纤维化和抗炎作用,并增加外周组织的胰岛素敏感性,从而改善肝脏病理。然而,小鼠模型中的机制研究表明,肝细胞中 PPAR γ 的激活可能会降低或限制 TZD 对 NAFLD 的治疗潜力。在本综述中,我们简要介绍了 PPAR 亚型的简史、它们在不同组织中的表达相关性以及 NAFLD 的发病机制和潜在治疗方法。我们还讨论了一些来自小鼠模型的证据,这些证据可能有助于内分泌学家评估 PPAR 的组织特异性作用、补充逆向内分泌学方法,并了解 PPAR γ 在肝细胞和非实质细胞中的直接作用。
房颤和冠状动脉疾病具有很强的关联。糖尿病(DM)也是AF发展的已知危险因素,DM的严重程度几乎与AF负担的恶化直接相关。虽然建立了糖尿病与AF之间的联系,但最近对抗糖尿病药物的兴趣减少心血管结局,例如心力衰竭,动脉粥样硬化冠状动脉疾病和AF。但是,成本为可访问性带来了一个重大问题。噻唑烷二酮(TZDS)可以在DM和AF处理之间提供导管。一些研究表明,使用的主要TZD Pioglitazone可能对降低某些人群的AF风险具有积极作用。然而,吡格列酮与房颤之间的关系很复杂,证据并不完全一致。一些研究表明,吡格列酮可能对心脏组织具有抗炎和抗纤维化作用,这可能有助于降低AF的风险。这些作用可能与药物对改善胰岛素敏感性和减少炎症的影响有关。这项回顾性研究将研究吡格列酮的使用与房颤发展的风险之间的关系。此外,我们将调查吡格列酮使用是否会降低心房颤动患者的心室快速发作。
二甲双胍抗胰岛素抵抗,其作用方式与其他药物不同,并与其他药物相互互补,以提供添加葡萄糖的效力。二甲双胍与磺胺尿素的组合(例如葡萄糖或metaglip)或巨litinide(例如prandimet)提供额外的胰岛素分泌,而二甲双胍与噻唑烷的组合(例如actoplus met)可以通过两种不同的细胞机制来解决胰岛素抵抗。将二甲双胍与DPP-4抑制剂组合(例如Janumet,Kombiglyze,Jentadueto或Kazano)对内源性泌尿素激素(GLP-1和GIP)的影响是添加的,尤其是为了增强胰岛素胰岛素的分泌,减少胰高血糖素的分泌,延迟胃空排空并增加Satietie。二甲双胍与SGLT-2抑制剂的组合(例如Synjardy,Invokamet,Xigduo或Segluromet)是SGLT-2抑制剂的降糖和降低糖尿疗法的添加剂。现在在某些区域可用二甲甲曲蛋白与Linagliptin和empagliflozin(Trijardy XR)的单盘三重组合。empagliflozin/linagliptin/二甲双胍组件的平板电脑强度(mg)为5/2.5/1000、12.5/2.5/2.5/1000、10/5/1000和25/5/1000。GLP-1受体激动剂或胰岛素(通过皮下注射)与二甲双胍(通过片剂)分开给药。格列本在欧洲被称为Glibenclamide。
金属离子不仅在生物学中发挥关键作用,还广泛用于诊断和治疗剂。临床应用的例子包括用作 MRI 造影剂的钆配合物、用作成像剂的锝-99m 配合物和铂基抗癌剂药物。超过 50% 的癌症治疗使用 DNA 靶向铂类药物,无论是单独使用还是联合治疗。尽管它们在临床上取得了巨大的成功,但它们也存在一些缺点,包括因剂量相关毒性和耐药性出现而产生的严重副作用。这些局限性激发了人们对铂和非铂金属配合物的研究,其作用方式与铂类药物不同。因此,人们设计和开发了存在于元素周期表中的金属化合物,用于治疗从癌症(例如 Ru、Gd、Ti、Ge、V 和 Ga)到糖尿病(V 和 Cr)再到传染病(Ag、Cu 和 Ru)等一系列疾病。每种金属都有独特的特性,例如氧化还原电位和配体交换动力学。因此,金属中心的选择和配体的设计对新药物的治疗效果和作用机制起着至关重要的作用( Hanif and Hartinger,2018 )。本期特刊“无机药物设计与合成的新策略”汇集了六篇关于金属药物发现和开发领域最新进展的文章。半夹心金属芳烃支架具有可操纵的特性,可以优化分子的类药特性。这类化合物近年来引起了人们的极大兴趣。Mokesch 等人报道了一系列新型的 2-苯基苯并噻唑衍生物半夹心 Ru II 和 Os II 配合物。Ru II 和 Os II 配合物在低 µ M 范围内表现出抗癌活性。用作配体的 2-苯基苯并噻唑衍生物的效力至少比金属环低一个数量级。本文报道了金属环的水稳定性、与小生物分子的相互作用、细胞积累以及诱导细胞凋亡/坏死。代表性 Ru II 复合物的荧光显微镜显示其在溶酶体和其他亚细胞区室中积累量很高。分子靶向药物在改善抗癌剂的不良副作用和毒性方面表现出巨大的潜力。靶向药物识别并结合癌细胞表面与健康细胞相比过度表达的受体。在这方面,已广泛探索在各种肿瘤中过度表达的表皮生长因子受体 (EGFR)。Li 等人用抑制 EGFR 的 4-苯胺基喹唑啉衍生物对 Pt II 三联吡啶复合物进行了功能化。抗癌 Pt II 化合物表现出多种 DNA 相互作用模式,是强效的 EGFR 抑制剂。这些结果对于未来设计多靶向药物非常令人鼓舞。
二杂芳酰胺基化合物 1C8 和氨基噻唑酰胺相关化合物 GPS167 可抑制 CLK 激酶,并影响多种癌细胞系的增殖。之前使用 GPS167 进行的化学基因组学筛选表明,与有丝分裂纺锤体组装相关的成分的消耗会改变对 GPS167 的敏感性。在这里,使用 1C8 进行的类似筛选也确定了参与有丝分裂纺锤体组装的成分的影响。因此,用 1C8 和 GPS167 处理的细胞的转录组分析表明,编码有丝分裂纺锤体组装成分的转录物的表达和 RNA 剪接受到影响。通过显示影响有丝分裂纺锤体组装的药物的亚毒性浓度会增加对 GPS167 的敏感性,证实了微管连接的功能相关性。1C8 和 GPS167 影响与肿瘤进展相关的通路中转录本的表达和剪接,包括 MYC 靶标和上皮间质转化 (EMT)。最后,1C8 和 GPS167 改变了参与抗病毒免疫反应的转录本的表达和可变剪接。与此观察结果一致,消耗双链 RNA 传感器 DHX33 可抑制 GPS167 介导的 HCT116 细胞细胞毒性。我们的研究揭示了 1C8 和 GPS167 影响癌细胞增殖以及转移关键过程的分子机制。
警告!吸入有害。吞咽有害。引起眼部刺激。吸入打磨和研磨粉尘可能有害。不要吸入蒸气或雾气。不要吞咽。避免接触眼睛。在使用前,请保持容器紧闭并密封。操作后彻底清洗。在使用和干燥期间和之后,提供新鲜空气通风。避免吸入因使用此制剂而产生的灰尘、颗粒、喷雾或雾气。根据需要使用个人防护设备。注意:这些警告涵盖产品系列。使用前,请阅读并遵循产品特定的 SDS 和标签信息。急救:如果吞下,请用水漱口(仅在患者意识清醒时)。立即呼叫医生。除非医务人员指示,否则不要催吐。如果进入眼睛,请用水冲洗 15 分钟。检查并取下隐形眼镜。如果沾到皮肤上,请用水彻底冲洗。用肥皂和水清洗。如果出现刺激症状,请就医。如果吸入,请移至新鲜空气处。立即就医。含有异噻唑啉酮。可能引起过敏反应。请存放在儿童接触不到的地方。对于工作场所使用,可从零售商处获取 SDS,或致电 (412) 492- 5555。紧急泄漏信息:(412) 434-4515(美国)。
新的pentagamavunone-1(PGV-1)衍生物,化学预防蛋白素类似物1.1(CCA-1.1)被描述为一种改进的物理化学特征,对结肠癌细胞的细胞毒性活性相似,并与各种癌症生物标志物结合,具有相似的细胞毒性活性。当前的研究探索了与促进Widr结肠癌细胞系生理变化的能力相关的细胞毒性活性。3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物测定法用于评估WIDR和NIH-3T3细胞对CCA-1.1和PGV-1处理的细胞生存能力。2',7'-二氯氟乙烯二乙酸酯染色,碘化丙啶染色和膜联蛋白V-PI染色,以检查分别检查活性氧(ROS)水平,细胞周期谱和凋亡。为了进一步检查形态学变化,使用SA-β-GAL染色来检测衰老的发生。我们比PGV-1检索了CCA-1.1对WIDR的细胞毒性作用,对NIH-3T3成纤维细胞没有影响。我们的化合物刺激了与PGV-1相等水平的G2/M相,凋亡,ROS产生和衰老的细胞周期的停滞。总的来说,这些数据加强了CCA-1.1作为PGV-1的可行替代方案,归因于其改进的理化特征,这些特征有助于设计用于医疗目的的剂量配方。
米亚纳叶具有与抗生素相当的细菌抑制特性,可用于治疗虾中的颤动。然而,米亚纳叶中的生物活性化合物及其作为饲料中免疫刺激物的潜力,尤其是它们对总血细胞的影响和老虎大虾的吞噬活性,尚未得到充分探索。该实验以0、10、20和40G/ kg的浓度使用Miana叶提取物。生物活性化合物,并使用SPSS计划对总血细胞,吞噬活性进行统计分析和老虎虾存活。分析确定了MIANA叶提取物乙醇馏分中的100种化合物。其中,具有最高峰面积的三种化合物为:氨基甲酸,甲基酯(CAS甲基甲酯)为21.13%; 4(5H) - 噻唑龙,2-氨基 - (Cas pseudothiohydantoin)为16.16%;和环氧硅氧烷,己酰胺(CAS 1,1,3,3,5,5,5-己糖甲基 - 环己烷烷)为20.50%。实验结果表明,米亚纳叶提取物显着影响吞噬活性和存活,但不影响虎虾的总血细胞。在40g/ kg处理中观察到吞噬活性,存活和总血细胞的最高值,分别为76%,6.25 x 10^5 cfu/ ml和86.67%的值。总而言之,Miana叶提取物含有活跃的抗菌,抗病毒和抗炎化合物,并增强了总血细胞,吞噬活性和虎虾的存活率。
首字母缩略词列表 AANDC – 加拿大原住民事务和北方发展部 AEMP – 水生影响监测计划 BATEA – 经济上可实现的最佳可用技术 CCME – 加拿大环境部长理事会 CEPA – 加拿大环境保护法 COPC – 潜在关注污染物 DFO – 加拿大渔业和海洋部 DOC – 溶解有机碳 DOE – 环境部 EC – 加拿大环境部 EC-CWS – 加拿大野生动物服务局 EEM – 环境影响监测 EIS – 环境影响声明 ENR – 环境与自然资源 EQC – 流出物质量标准 EROD – 乙氧基异噻唑啉-O-脱乙基酶 ETMF’s – 暴露和毒性修正因子 GNWT – 西北地区政府 IEMA – 独立环境监测机构 IMP – 焚烧管理计划 IR – 信息请求 LLCF – 长湖控制设施 LUP – 土地使用许可证 MBCA – 候鸟公约法 MBR – 候鸟条例 MDL – 方法检测限 MMER – 金属采矿废水法规 MVEIRB – 麦肯齐河谷环境影响审查委员会 MVRMA – 麦肯齐河谷资源管理法 NWT – 西北地区 QA/QC – 质量保证 / 质量控制 SARA – 濒危物种法 SNP – 监测网络计划 SSWQO – 场地特定水质目标 TMP – 尾矿管理计划 TSP – 总悬浮颗粒物 TSS – 总悬浮固体 US EPA – 美国环境保护署