在使用 AKEEGA 之前和治疗期间,应避免使用降血压药并纠正低钾血症。(5.3)• 肝毒性:可能很严重甚至致命。监测肝功能并按建议调整、中断或停止治疗。(2.3、5.4)• 肾上腺皮质功能不全:监测肾上腺皮质功能不全的症状和体征。在应激情况之前、期间和之后可能需要增加皮质类固醇的剂量。(5.5)• 低血糖:当使用含有噻唑烷二酮类(包括吡格列酮)或瑞格列奈的药物的患者服用醋酸阿比特龙(AKEEGA 的一种成分)时,据报道会出现严重的低血糖。在治疗期间监测糖尿病患者的血糖,并评估是否需要调整抗糖尿病药物的剂量。 (5.6) • 与二氯化镭 Ra 223 联合使用会增加骨折和死亡率:不建议将 AKEEGA 和泼尼松与二氯化镭 Ra 223 联合使用。 (5.7) • 后部可逆性脑病综合征 (PRES):在接受尼拉帕尼(AKEEGA 的一种成分)治疗的患者中观察到 PRES。如果确认 PRES,请停用 AKEEGA。 (5.8) • 胚胎-胎儿毒性:AKEEGA 可导致胎儿伤害。建议有生育能力的女性伴侣的男性采取有效的避孕措施。 (5.9、8.1、8.3)
摘要:人类唾液 - 酸性结合免疫球蛋白样凝集素-9(SIGLEC-9)是在几个免疫细胞上表达的糖免疫检查点受体。SIGLEC-9与含糖酸(唾液聚糖)的唾液酸的结合已充分记录,以调节其作为抑制受体的功能。在这里,我们首先使用良好的三维核磁共振(NMR)方法分配了SIGLEC-9 V-SET结构域(Siglec-9 D1)的氨基酸骨架。然后,我们将溶液NMR和分子动力学模拟方法结合在一起,以解释Siglec-9与天然配体α2,3和α2,62,6 siAllyl乳糖胺(SLN)(SLN)(SAIALYL LEWIS X(SALEX)(SALEX)和6-O硫的分子细节,并与两个固定型结合,并将其与两个固定型结合。正如预期的那样,在规范的唾液酸结合位点的F和Gβ链之间容纳了neu5ac。在NEU5AC的C9位置添加杂型支架9 N -5-(2-甲基噻唑-4-基)噻吩磺酰胺(MTTS)会产生与位于Siglec-9的N-末端区域的疏水性残基的新相互作用。同样,在neu5ac的C5位置添加芳族取代基(5- n-(1-二苯基 - 1 H-1 H- 1,2,3-三唑-4-基)甲基(BTC))稳定在SigleC-9中存在长长的B'-c loop的构象。这些结果暴露了负责SIGLEC-9对这两个改良的唾液聚糖的增强的亲和力和特异性的基本机制,并阐明了针对Siglec-9的下一代修改后的Sialoglycans的合理设计。■简介
硫胺素(维生素B1)对于大脑至关重要。这归因于硫胺素二磷酸(THDP)在葡萄糖和能量代谢中的辅酶作用。然而,已经描述了硫胺三磷酸化的衍生物硫胺素三磷酸硫胺素三磷酸硫胺素三磷酸硫胺素(后者在我们的实验室中发现的),但继承人生理角色仍然未知。我们最近对具有更高生物利用度的硫胺素前体感兴趣。其中,已经对硫代氨基胺(BFT)进行了广泛的研究,并且在神经退行性的啮齿动物模型和人类临床研究中都具有有益的作用。BFT没有已知的不良反应,可以改善轻度阿尔茨海默氏病(AD)患者的认知结果。BFT的作用机理仍然未知。的确,在细胞培养和动物模型中,BFT具有抗氧化和抗炎特性,似乎是由独立于THDP的辅酶功能的机制介导的。最近的体外研究表明,另一种硫胺素硫胺素,二苯甲胺(DBT)比BFT更有效,尤其是在其抗炎效力方面,并且在较低浓度下有效。硫胺素硫代植物具有与循环硫胺素浓度的增加以及迄今未识别的开放式噻唑环衍生物的增加有关的多效特性。在神经退行性,神经发育和精神疾病的领域,识别活性神经保护剂及其作用机制的澄清开放了极有前途的观点。
摘要目的:局部肿瘤进展是无法手术切除的胰腺导管腺癌 (PDAC) 患者发病率和死亡率显著上升的原因。迫切需要实现持久局部控制的新型有效方法。我们测试了 CPI-613 (devimistat)(一种首创的线粒体代谢小分子研究抑制剂)是否能够改变癌细胞能量代谢并使 PDAC 细胞对放射治疗 (RT) 敏感。方法和材料:分别使用台盼蓝染料排除试验、菌落形成试验和 7-氨基放线菌素 D 试验确定 RT 与 CPI-613 联合治疗对 PDAC 细胞 (MiaPaCa-2 和 Panc-1) 活力、克隆形成潜力和细胞死亡诱导的影响。使用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物和球状体形成试验测量了 CPI-613-RT 和化疗药物(吉西他滨或 5-氟尿嘧啶)在 MiaPaCa-2 细胞中的协同作用。使用液相色谱-质谱法分析用 RT、CPI-613 或两者处理的代谢物,以确定能量代谢的变化。结果:本研究表明,与单独使用 RT 相比,单次分次 RT(2 和 10 Gy)与 CPI-613 的组合显著抑制了 PDAC 细胞生长。分子分析显示,α-酮戊二酸脱氢酶在蛋白质水平上受到抑制。此外,我们证明,当用 RT-CPI-613 组合处理时,PDAC 细胞的细胞死亡率增加。对接受 CPI-613-RT 治疗的 PDAC 细胞进行靶向代谢组学分析,发现关键线粒体代谢物发生了改变,并且
摘要:人类唾液 - 酸性结合免疫球蛋白样凝集素-9(SIGLEC-9)是在几个免疫细胞上表达的糖免疫检查点受体。SIGLEC-9与含糖酸(唾液聚糖)的唾液酸的结合已充分记录,以调节其作为抑制受体的功能。在这里,我们首先使用良好的三维核磁共振(NMR)方法分配了SIGLEC-9 V-SET结构域(Siglec-9 D1)的氨基酸骨架。然后,我们将溶液NMR和分子动力学模拟方法结合在一起,以解释Siglec-9与天然配体α2,3和α2,62,6 siAllyl乳糖胺(SLN)(SLN)(SAIALYL LEWIS X(SALEX)(SALEX)和6-O硫的分子细节,并与两个固定型结合,并将其与两个固定型结合。正如预期的那样,在规范的唾液酸结合位点的F和Gβ链之间容纳了neu5ac。在NEU5AC的C9位置添加杂型支架9 N -5-(2-甲基噻唑-4-基)噻吩磺酰胺(MTTS)会产生与位于Siglec-9的N-末端区域的疏水性残基的新相互作用。同样,在neu5ac的C5位置添加芳族取代基(5- n-(1-二苯基 - 1 H-1 H- 1,2,3-三唑-4-基)甲基(BTC))稳定在SigleC-9中存在长长的B'-c loop的构象。这些结果暴露了负责SIGLEC-9对这两个改良的唾液聚糖的增强的亲和力和特异性的基本机制,并阐明了针对Siglec-9的下一代修改后的Sialoglycans的合理设计。■简介
伊维菌素(IVM)是一种抗寄生虫药物,用于治疗寄生虫。它已在人类中用于治疗肠道强质虫病和尾cer虫病,目前,研究人员正在研究其治疗冠状病毒SARS-COV-2的潜力。由于其广泛的活性,IVM过度使用了动物,这引起了研究人员研究其毒性作用的兴趣。由于过度使用IVM,已经报道了动物的细胞毒性和毒性作用。因此,本研究旨在通过检查DNA损伤响应基因的表达(OGG1)的表达来评估IVM对Madin-Darby-Bovine-Kidney(MDBK)细胞系的细胞毒性和遗传毒性作用。使用测定法(MTT 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物)测试IVM的细胞毒性,而使用彗星分析以及微核测定法对基因毒性进行了评估。此外,在使用Trizol方法从MDBK细胞系中提取RNA后,通过QRT-PCR测量了DNA大坝反应基因(OGG1)的基因表达,并通过反向转移酶PCR将RNA转化为cDNA。在实验过程中,以不同剂量的IVM(即25%,50%,75%)以及LC50/2,LC50和LC50 * 2进行测量细胞活力百分比。观察到,随着IVM浓度的增加,OGG1的基因表达增加。确定IVM对MDBK细胞系具有细胞毒性和遗传毒性作用。进一步,建议应进行与分子水平和其他模型生物的毒性作用有关的研究,以打击其危险效应。
背景:间充质干细胞(MSC)具有巨大的潜力,因为疗法可以再生组织损伤并促进组织稳态。在低氧浓度中MSC的预处理已显示出影响这些细胞的治疗潜力。这项研究旨在比较在缺氧和正态氧中培养的MSC的营养因子的特征和分泌。方法:通过Explant方法从沃顿商人脐带(UC)组织的果冻中分离出MSC,并以流动性细胞仪为特征。在24小时的COCL 2诱导的低氧培养物之后,分别通过锥虫蓝排除试验和甲基噻唑基四唑(MTT)测定法分析了MSC的生存力和代谢活性。使用酶 - 连接的免疫吸附测定法(ELISA)方法,在条件培养基中评估了肝细胞生长因子(HGF)和血管内皮生长因子(VEGF)的分泌。结果:流式细胞仪分析表明,> 99%的MSC细胞群体为CD73和CD90阳性,CD105阳性为阳性。虽然MSC的细胞活力不受低氧培养条件的影响,但在低氧条件下,这些细胞的代谢活性率降低。与代谢活性降低相一致,低氧人类UC衍生的MSC产生的HGF低于常氧化物。与常氧MSC相比,在条件培养基中,缺氧预处理的MSC分泌更高的VEGF水平(P <0.05)。结论:缺氧降低了与HGF和VEGF分泌的调节有关的MSC的代谢活性。建议缺氧也可能影响MSC细胞的治疗能力。
危险!可燃液体和蒸气。吸入有害。吞咽有害或致命。引起呼吸道和眼睛刺激。可能引起过敏性皮肤反应吸入高浓度蒸气可能会影响中枢神经系统。反复接触高浓度蒸气可能会刺激呼吸系统并对大脑和神经系统造成永久性损伤。高浓度蒸气会引起头痛、头晕、嗜睡和恶心,并可能导致昏迷。可进入肺部并造成损害。远离热源和火焰。请勿吸入蒸气或雾气。请勿吞咽。请勿接触皮肤或衣物。避免接触眼睛。在使用前,请将容器紧闭密封。操作后彻底清洗。在使用和干燥期间及之后,提供新鲜空气通风。避免吸入使用此制剂时产生的灰尘、微粒、喷雾或雾气。根据需要使用个人防护设备。危险——如果处理不当,被洪水半透明醇酸树脂/油污浸湿的碎布、钢丝绒或废弃物可能会自燃。每次使用后,立即将碎布、钢丝绒或废弃物放入密封的装满水的金属容器中。急救:如果吞下,用水漱口(仅在患者意识清醒时)。立即就医。除非医务人员指示,否则不要催吐。如果进入眼睛,用水冲洗 15 分钟。检查是否有隐形眼镜并取下。如果接触,立即用大量水冲洗皮肤,同时脱下受污染的衣服和鞋子。如果出现刺激,请就医。如果吸入,请移至新鲜空气处。立即就医。含有异噻唑啉酮。可能引起过敏反应。请存放在儿童接触不到的地方。对于工作场所使用,可从零售商处获取 SDS,或致电 (412) 492-5555。紧急泄漏信息:(412) 434-4515(美国)。
化疗无法消灭癌细胞,主要是因为药物不能选择性地在肿瘤部位积聚,而这也会影响健康细胞。在本研究中,我们研究了磁铁矿纳米结构脂质载体 (NLC),以便将姜黄素靶向递送到乳腺癌细胞中。采用共沉淀法,在碱性介质中将 FeCl 2 和 FeCl 3 以适当的比例混合,制备超顺磁性氧化铁纳米粒子 (SPION)。所得磁流体非常稳定且具有高磁性。为了制备含有 NLC (NLC-SPION)、十六烷基棕榈酸酯和鱼肝油的 SPION,分别使用 Tween 80 和 span60 作为固体脂质、液体脂质、表面活性剂和助表面活性剂。将抗癌药物姜黄素负载于NLC-SPIONs(CUR-NLC-SPIONs)中,评价其粒径、zeta电位、多分散指数(PDI)、药物包封率、载药量和热稳定性等特性。结果表明,CUR-NLC-SPIONs的平均粒径为166.7±14.20nm,平均zeta电位为-27.6±3.83mv,PDI为0.24±0.14。所有制备的纳米粒子(NPs)的包封率为99.95±0.015%,载药量为3.76±0.005%。通过透射电子显微镜(TEM)进行形态学研究,表明NPs呈球形。 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 测定细胞活力证明,合成的 CUR-NLC-SPION 对人类乳腺癌细胞具有比游离姜黄素更好的细胞毒活性。这种新型药物输送系统受益于超顺磁性,可作为开发新型生物相容性药物载体的合适平台,并有潜力用于靶向癌症治疗。
摘要。背景/目标:我们以前报道了与姜黄素结合使用时氨基磷灰酮衍生物作为对乳腺和其他起源反应性肿瘤的治疗剂的潜力。这项研究旨在筛选新型氨基喹酮衍生物(RAU 008,RAU 010,RAU 015和RAU 018)与姜黄素结合使用姜黄素,以用于细胞毒性,抗血管生成和抗激发和抗抗激素对MCF-7和MCF-7和MDA-MDA-MB-231乳腺癌细胞。材料和方法:使用3-(4,5-二甲基噻唑-2-基)分析细胞毒性和抗血管生成作用-2,5-二苯基溴化溴化物溴化物测定和酶连接的免疫吸收测定;虽然使用粘附测定法,Boyden Chambers和Matrigel测量了抗转移性效应。结果:与单个治疗相比,姜黄素与RAU 008相比在MCF-7细胞中引起了明显的细胞毒性作用,而当与RAU 015和RAU 018结合使用时,它在MDA-MB-231细胞中也显示出相似的作用。MCF-7细胞中RAU 015加姜黄素的抗血管生成作用与MDA-MB-231细胞中的姜黄素和姜黄素相比,抗血管生成的效果比单个治疗更有效,而MDA-MB-231细胞的转移能力可显着降低,用于使用氨基酸氨基酸氨基酸氨基酸氨基氨基素蛋白蛋白蛋白蛋白蛋白蛋白蛋白含量降低。结论:作为针对乳腺癌的治疗剂,aminonaphthoquinones可能会提供巨大的希望,尤其是与姜黄素结合使用时。