黑人 1.01 0.28 3.66 白种人 2.37 0.76 7.41 西班牙裔 1.10 0.45 2.67 社会脆弱性指数 0.85 0.36 2.01 CAD 病史 0.80 0.46 1.41 CKD 病史 1.70 0.99 2.91 高脂血症病史 1.21 0.53 2.73 高血压病史 1.01 0.46 2.21 睡眠呼吸暂停病史 0.78 0.44 1.37 PDE5 病史 0.62 0.19 2.00 噻唑烷二酮 0.49 0.12 2.00 DPP4i 0.92 0.45 1.87 双胍类 0.67 0.41 1.11 磺酰脲类 1.07 0.62 1.84 SGLT2i 1.24 0.66 2.33 胰岛素 1.86 1.11 3.14 度拉鲁肽 0.75 0.31 1.82 利拉鲁肽 2.79 1.29 6.02 索马鲁肽 1.58 0.84 2.99 11 次或以上既往就诊 1.15 0.53 2.54 4 至 10 次既往就诊 0.91 0.40 2.09 女性 0.47 0.28 0.80 年龄 50 至 65 岁 1.75 0.74 4.11 年龄 65 至 74 岁 1.98 0.80 4.93 年龄 75 岁以上 1.58 0.55 4.50 目前吸烟者 1.25 0.59 2.66 曾吸烟者 0.82 0.48 1.42 吸烟状况不明 1.30 0.54 3.12 1 期肥胖 1.54 0.62 3.82 2 期肥胖 1.07 0.39 2.95 3 期肥胖 1.74 0.64 4.76 超重 0.57 0.20 1.61 HbA1c 10.2+ 2.46 0.90 6.75 HbA1c 6.5 至 8.3 1.77 0.74 4.23 HbA1c 8.4 至 10.1 1.69 0.64 4.45
抽象的目的是通过与胰糖 - 像肽-1受体-1受体激动剂(GLP-1RA)或噻唑诺替二酮(TZD)(TZD)患者的肝对比葡萄糖(如胰糖 - 肽-1受体1抑制剂(SGLT-2I)的肝脏有效性(SGLT-2I)的肝脏有效性。设计这项基于人群的队列研究是使用韩国的全国医疗保健索赔数据库(2014- 2022)进行的。我们包括了启动SGLT-2I或比较药物(GLP-1RA或TZD)的MASLD(≥40岁)的人。主要结果是肝功能不全事件的综合,包括腹水,流血,肝衰竭或肝移植的食管静脉曲张。肝病死亡和全因死亡也被评估为次要结果。COX比例危害模型用于估计为95%CI的HR。1:1之后的倾向评分匹配后,我们包括了22名启动SGLT-2I和GLP-1RA(中位年龄= 57岁,男性60%)的患者,以及191 628例启动SGLT-2I和TZD的患者(中位年龄= 57岁= 57岁,男性为72%)。与GLP-1RA相比,SGLT-2I显示出类似的肝代偿事件风险(HR 0.93,95%CI 0.76至1.14)。与TZD相比,SGLT-2I显示出肝代偿事件的风险降低(HR 0.77,95%CI 0.72至0.82)。与TZD相比,次级分析的结果显示,当通过性别分层时,肝功能不全事件的风险明显降低(男性:HR 0.87(95%CI 0.80-0.94);女性:HR:HR:HR 0.62(95%CI 0.55-0.69))。在这项全国队列研究中得出的结论是,与TZD相比,SGLT-2I与MASLD患者的肝功能不全事件的风险较低有关,同时证明与GLP-1RA的有效性相似。
2 型糖尿病美国糖尿病协会 (ADA) 和美国临床内分泌协会 (AACE) 推荐二甲双胍作为 2 型糖尿病的首选一线药物。(9,10)二甲双胍发生低血糖风险低,可促进适度减肥,在 1000-2000 mg/天剂量下具有良好的降糖效果。(10)如果 A1c 大于或等于血糖目标值 1.5%,或二甲双胍单药治疗约 3 个月后仍未达到 A1c 目标值,则应考虑两种药物联合使用。第二种药物(磺酰脲类、噻唑烷二酮类、二肽基肽酶-4 抑制剂、钠-葡萄糖协同转运蛋白 2 抑制剂、基础胰岛素、胰高血糖素样肽 1 激动剂)的选择取决于患者和药物的特征,目的是改善血糖控制,同时尽量减少副作用和患者负担。对于已确诊动脉粥样硬化性心血管疾病 (ASCVD) 或有高 ASCVD 风险指标(例如年龄大于或等于 55 岁且冠状动脉、颈动脉或下肢动脉狭窄大于 50% 或左心室肥大的患者)、HF 或 CKD 的患者,建议将具有 CVD 益处的 SGLT2 抑制剂或 GLP-1 作为降糖方案的一部分,与 A1C 无关,与二甲双胍的使用无关,并考虑其他患者特定因素。 ADA 还指出,对于患有或有较高风险患动脉粥样硬化性心血管疾病、心力衰竭和/或慢性肾病的 2 型糖尿病患者,其他药物(胰高血糖素样肽 1 受体激动剂、钠-葡萄糖协同转运蛋白 2 抑制剂)(根据血糖需求联合或不联合二甲双胍)是合适的初始治疗。(9)
摘要:乳腺癌是一种异质性疾病,具有不同的内在亚型。乳腺癌中最具侵袭性的亚型——三阴性乳腺癌(TNBC)具有高度异质性和转移率、预后不良以及由于缺乏雌激素受体、孕激素受体和人表皮生长因子受体2而缺乏治疗靶点的特点。靶向治疗已被批准用于许多其他癌症甚至其他乳腺癌亚型,但TNBC的治疗选择仍然主要局限于化疗。因此,需要新的、更有效的治疗方案。联合化疗与两种或两种以上的活性药物被认为是一种有前途的抗肿瘤工具,以获得更好的治疗反应并减少治疗相关的不良反应。该研究表明,在BT-549、MDA-MB-468和HCC1937 TNBC细胞系中,常用于TNBC治疗的细胞抑制剂紫杉醇(PAX)和sirtuin抑制剂:cambinol(CAM)具有拮抗作用。通过精确而严格的药效动力学方法-等效线分析确定药理相互作用的类型。分别利用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 和 5-溴-2 ' -脱氧尿苷 (BrdU) 测定法确定 CAM 单独使用或与 PAX 联合使用的细胞毒性和抗增殖作用。通过流式细胞术 (FACS) 确定单独或联合使用 PAX 和 CAM 治疗后 TNBC 细胞系中细胞凋亡的诱导情况,即具有活性 caspase-3 的细胞数。据观察,两种药物单独使用均会抑制细胞增殖并诱导细胞凋亡;然而,联合使用它们可改善所有分析的 TNBC 细胞系中的抗增殖和促凋亡作用。我们的结果表明,CAM 和 PAX 联合使用会产生拮抗作用,从而限制抗癌功效,并显示出临床前测试的重要性。
摘要目的:磷酸肌醇3-激酶/蛋白激酶AKT/哺乳动物雷帕霉素靶蛋白信号通路对细胞正常代谢和细胞生长至关重要。然而,该通路的异常激活与乳腺癌的进展和转移有关。最近,长链非编码RNA在干扰参与细胞生长和代谢的细胞信号通路中的作用已被发现。HOX反义基因间RNA是一种长链非编码RNA,其异常表达与乳腺癌的发展、治疗耐药和转移有关。本研究旨在调查长链非编码RNA HOX反义基因间RNA是否与乳腺癌细胞中的磷酸肌醇3-激酶/蛋白激酶AKT/哺乳动物雷帕霉素靶蛋白信号通路有关。方法:利用siRNA沉默乳腺癌细胞系MCF-7中的HOX反义基因间RNA。随后,使用实时RT-PCR评估HOX反义基因间RNA、PI3K、AKT和mTOR的基因表达水平。此外,使用3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物)分析法分析细胞增殖。结果:结果显示,与阴性对照相比,HOX反义基因间RNA敲低可以下调MCF-7细胞中PI3K、AKT和mTOR RNA的表达。此外,HOX反义基因间RNA沉默后乳腺癌细胞的增殖显着降低。结论:本研究可能引入HOX反义基因间RNA作为参与乳腺癌细胞中磷酸肌醇3-激酶/蛋白激酶AKT/哺乳动物雷帕霉素靶蛋白信号通路上调的分子,从而可能促进乳腺癌细胞增殖。关键词:MCF-7细胞。HOTAIR长链非编码RNA。RNA。长链非编码。基因表达。
摘要:T-2毒素为A型单端孢霉烯族毒素。为了降低T-2毒素的副作用并提高其肿瘤靶向性,本研究制备并表征了T-2毒素pH敏感脂质体(LP-pHS-T2)。以T-2毒素为对照,采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四唑溴化物法检测LP-pHS-T2对A549、Hep-G2、MKN-45、K562和L929细胞系的细胞毒性。研究了LP-pHS-T2对Hep-G2细胞的凋亡和迁移影响。LP-pHS-T2的制备工艺涉及以下参数:二棕榈酰磷脂酰胆碱:二油酰磷脂酰乙醇胺,1:2;总磷脂浓度20 mg/ml,磷脂:胆固醇3:1,4-(2-羟乙基)-1-哌嗪乙磺酸缓冲液(pH 7.4),10 ml,药脂比2:1,超声10 min后挤压,包封率达95±2.43%。挤压后LP-pHS-T2平均粒径为100 nm,透射电镜观察显示LP-pHS-T2呈圆形或椭圆形,大小均匀。释放曲线呈现两阶段下降趋势,前6 h T-2毒素快速渗漏(释放量~20%),随后持续释放至48 h(释放量~46%),48-72 h渗漏率增加(释放量~76%),72 h时达到最低。当LP‑pHS‑T2浸泡在0.2 mol/l磷酸二钠‑磷酸二氢钠缓冲液(pH 6.5)中时,释放速度明显加快,释放率可达91.2%,表现出较强的pH敏感性。抗肿瘤试验表明,LP‑pHS‑T2能够促进Hep‑G2细胞凋亡,抑制其迁移。本研究为基于T‑2毒素的抗癌药物的开发提供了一种新方法。
摘要目的:肾细胞癌 (RCC) 是最常见且致命的泌尿系统恶性肿瘤,发生远处转移的预后不佳。褪黑素被认为是一种针对多种恶性肿瘤的潜在抑癌剂,索拉非尼已被认为是治疗 RCC 的药物,但褪黑素和索拉非尼对人 RCC 的协同作用尚未阐明。材料和方法:用褪黑素联合索拉非尼处理人肾癌细胞系 (Caki-1 和 ACHN),通过 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物测定和流式细胞术检测细胞生长和细胞周期。通过体外迁移和侵袭试验检测细胞迁移/侵袭能力。通过定量逆转录聚合酶链反应和蛋白质印迹法测量 RCC 细胞中转移相关蛋白 2 (MTA2) 的蛋白质和 mRNA 表达。使用 TISIDB 软件从 Cancer Genome Atlas 数据库中分析 RCC 组织中 MTA2 的临床意义。结果:结果显示,褪黑素联合索拉非尼、索拉非尼或褪黑素单独治疗均未诱导人 RCC 细胞和 HK2 细胞的细胞毒作用或细胞周期停滞。此外,褪黑素和索拉非尼联合治疗通过协同抑制 MTA2 表达协同降低人 Caki-1 和 ACHN 细胞的迁移和侵袭。生物信息学分析显示,MTA2 表达与人 RCC 中的总生存期(P < 0.002)、肿瘤分级(P < 0.001)和肿瘤分期(P < 0.001)显着相关。结论:我们的结果表明,褪黑素和索拉非尼联合使用可通过抑制 MTA2 显著降低 RCC 细胞的迁移和侵袭能力。我们认为这种新颖的组合策略对于治疗 RCC 具有良好的前景,但仍需要进一步研究。
Baker D,Hassabis D,Jumper J(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 Blanke SR,Blanke RV(1984)。 Schotten-Baumann反应有助于对极性化合物的分析:用于测定Tris(羟甲基)氨基甲烷(THAM)的应用。 j肛门毒素8(5):231–233。 Dhina MA,Kaniawati I,Yustiana YR(2023)。 在药房学习计划中学习基本物理学,并具有药房学生所需的系统思维技能。 动力:物理教育杂志8(1):55–64。 Ellman GL(1958)。 一种用于确定低浓度胃a的比色方法。 Arch Biochem Biophys 74(2):443–450。 Erdogan M,Kilic B,Sagkan RI,Aksakal F,Ercetin T等。 (2021)。 设计,合成和生物学评估是新的苯唑唑酮/苯甲噻唑酮衍生物作为针对阿尔茨海默氏病的多目标剂。 Eur J Med Chem 212:113124。 Gulcan Ho,Orhan IE(2021)。 具有不同杂环支架的双重单胺氧化酶和胆碱酯酶抑制剂。 Curr Top Med Chem 21(30):2752–2765。 Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。 苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。 Curr Med Chem 26(18):3260–3278。 Hopfield JJ,Hinton G(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 McCall RP(2007)。 物理学与药房专业的相关性。Baker D,Hassabis D,Jumper J(2024)。诺贝尔物理学奖2024。从https://www.nobelprize.org/prizes/physics/2024/summary/检索。Blanke SR,Blanke RV(1984)。Schotten-Baumann反应有助于对极性化合物的分析:用于测定Tris(羟甲基)氨基甲烷(THAM)的应用。j肛门毒素8(5):231–233。Dhina MA,Kaniawati I,Yustiana YR(2023)。 在药房学习计划中学习基本物理学,并具有药房学生所需的系统思维技能。 动力:物理教育杂志8(1):55–64。 Ellman GL(1958)。 一种用于确定低浓度胃a的比色方法。 Arch Biochem Biophys 74(2):443–450。 Erdogan M,Kilic B,Sagkan RI,Aksakal F,Ercetin T等。 (2021)。 设计,合成和生物学评估是新的苯唑唑酮/苯甲噻唑酮衍生物作为针对阿尔茨海默氏病的多目标剂。 Eur J Med Chem 212:113124。 Gulcan Ho,Orhan IE(2021)。 具有不同杂环支架的双重单胺氧化酶和胆碱酯酶抑制剂。 Curr Top Med Chem 21(30):2752–2765。 Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。 苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。 Curr Med Chem 26(18):3260–3278。 Hopfield JJ,Hinton G(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 McCall RP(2007)。 物理学与药房专业的相关性。Dhina MA,Kaniawati I,Yustiana YR(2023)。在药房学习计划中学习基本物理学,并具有药房学生所需的系统思维技能。动力:物理教育杂志8(1):55–64。Ellman GL(1958)。 一种用于确定低浓度胃a的比色方法。 Arch Biochem Biophys 74(2):443–450。 Erdogan M,Kilic B,Sagkan RI,Aksakal F,Ercetin T等。 (2021)。 设计,合成和生物学评估是新的苯唑唑酮/苯甲噻唑酮衍生物作为针对阿尔茨海默氏病的多目标剂。 Eur J Med Chem 212:113124。 Gulcan Ho,Orhan IE(2021)。 具有不同杂环支架的双重单胺氧化酶和胆碱酯酶抑制剂。 Curr Top Med Chem 21(30):2752–2765。 Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。 苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。 Curr Med Chem 26(18):3260–3278。 Hopfield JJ,Hinton G(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 McCall RP(2007)。 物理学与药房专业的相关性。Ellman GL(1958)。一种用于确定低浓度胃a的比色方法。Arch Biochem Biophys 74(2):443–450。Erdogan M,Kilic B,Sagkan RI,Aksakal F,Ercetin T等。(2021)。设计,合成和生物学评估是新的苯唑唑酮/苯甲噻唑酮衍生物作为针对阿尔茨海默氏病的多目标剂。Eur J Med Chem 212:113124。Gulcan Ho,Orhan IE(2021)。 具有不同杂环支架的双重单胺氧化酶和胆碱酯酶抑制剂。 Curr Top Med Chem 21(30):2752–2765。 Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。 苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。 Curr Med Chem 26(18):3260–3278。 Hopfield JJ,Hinton G(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 McCall RP(2007)。 物理学与药房专业的相关性。Gulcan Ho,Orhan IE(2021)。具有不同杂环支架的双重单胺氧化酶和胆碱酯酶抑制剂。Curr Top Med Chem 21(30):2752–2765。Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。 苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。 Curr Med Chem 26(18):3260–3278。 Hopfield JJ,Hinton G(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 McCall RP(2007)。 物理学与药房专业的相关性。Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。Curr Med Chem 26(18):3260–3278。Hopfield JJ,Hinton G(2024)。诺贝尔物理学奖2024。从https://www.nobelprize.org/prizes/physics/2024/summary/检索。McCall RP(2007)。物理学与药房专业的相关性。Am J Pharm Educ 71(4):第70条。pal R,Pandey P,Amjad TM(2023)。物理学在药物剂型制剂中的主导作用。Goya Journal 16(5):125–138。 Pillai JA,Cummings JL(2013)。 阿尔茨海默氏病预性阶段的临床试验。 医疗诊所,97(3),439–457。 Pourhassan B,Hendi SH,Upadhyay S,Sakalli I,Saridakis EN(2023)。 (非)线性电荷BTZ黑洞的热波动。 int jour mod d Phys D 32(16):2350110。Goya Journal 16(5):125–138。Pillai JA,Cummings JL(2013)。 阿尔茨海默氏病预性阶段的临床试验。 医疗诊所,97(3),439–457。 Pourhassan B,Hendi SH,Upadhyay S,Sakalli I,Saridakis EN(2023)。 (非)线性电荷BTZ黑洞的热波动。 int jour mod d Phys D 32(16):2350110。Pillai JA,Cummings JL(2013)。阿尔茨海默氏病预性阶段的临床试验。医疗诊所,97(3),439–457。Pourhassan B,Hendi SH,Upadhyay S,Sakalli I,Saridakis EN(2023)。(非)线性电荷BTZ黑洞的热波动。int jour mod d Phys D 32(16):2350110。
摘要 β-谷甾醇是植物中最常见的生物活性植物甾醇之一。它具有消炎、抗氧化、免疫抑制和抗关节炎的作用。炎症与严重疾病有关,这种疾病已导致全球许多人死亡。研究发现,用于治疗炎症的大多数药物都会抑制免疫系统的功能。β-谷甾醇乙酸酯和 β-谷甾醇三醇由 β-谷甾醇合成,并对 2,2-二苯基-1-苦基肼 (DPPH)、2,2-偶氮双-3-乙基苯并噻唑啉-6-磺酸 (ABTS) 和过氧化氢进行抗氧化测试。此外,还用脂氧合酶、蛋白酶、白蛋白变性抑制和膜稳定化来测定炎症抑制。 β-谷甾醇及其合成产物的 DPPH 和 ABTS 性能结果相当,但 β-谷甾醇乙酸酯的过氧化氢清除活性高于 β-谷甾醇和 β-谷甾醇三醇。三种样品在脂氧合酶抑制方面无显著差异(P<0.05),但 β-谷甾醇三醇在 10 – 100 µg/mL 时具有更高的蛋白酶抑制率。此外,在 150 µg/mL 的测量中,β-谷甾醇乙酸酯在白蛋白变性抑制剂和膜稳定剂方面表现出明显更好的性能。β-谷甾醇合成产物的抗氧化和抗炎活性优于 β-谷甾醇。衍生物 β-谷甾醇对炎症和其他疾病具有增强的治疗效果。关键词:抗氧化剂,衍生物,炎症β-谷甾醇,合成 引言 当自由基与分子氧相互作用时,会产生活性氧,从而导致炎症。类风湿性关节炎、高血压、癌症、心脏病和炎症性肠病等许多疾病都与炎症有关,而炎症又会导致
糖尿病是一种由多种原因引起的以慢性高血糖为特征的代谢性疾病,可导致心脑血管疾病、糖尿病肾病、糖尿病视网膜病变等慢性并发症(1)。糖尿病已成为全球重大公共卫生问题,严重影响人们的日常生活。世界范围内糖尿病患病率逐年上升,2型糖尿病(T2DM)患者占糖尿病患者的90%以上(2,3)。目前,治疗2型糖尿病的药物分为两类:传统药物(如磺酰脲类、噻唑烷二酮类、双胍类、胰岛素等)和新型靶点药物(如多种肠促胰岛素激动剂、葡萄糖激酶激动剂、胰高血糖素受体拮抗剂等)(4)。西他列汀于2006年获美国食品药品管理局(FDA)批准上市,可单独或与其他药物联合使用,治疗2型糖尿病并改善血糖控制(5)。它是第一个用于治疗2型糖尿病的二肽基肽酶IV(DPP4)抑制剂,主要通过选择性抑制DPP4活性,减少胰高血糖素样肽1(GLP-1)的降解,从而发挥降血糖作用(6)。DPP4又称CD26,是一种110kDa的II型跨膜糖蛋白,在脑、内皮、心脏、肠、肾、肝、肺、骨骼肌、胰腺、胎盘和淋巴细胞等组织中表达(7)。GLP-1是DPP4的内源性生理底物。 GLP-1主要刺激胰岛素分泌,抑制胰高血糖素分泌,从而限制餐后血糖波动。作为食欲和食物摄入的生理调节剂,它还抑制胃肠蠕动和胃酸分泌。餐后GLP-1分泌迅速增加,但约75%的分泌肽被内皮细胞管腔表面的DPP4降解,仅25%到达门脉循环,其余50%的GLP-1在肝脏DPP4和可溶性DPP4的作用下进一步降解(8)。因此,DPP4与2型糖尿病密切相关,我们认为发现DPP4与2型糖尿病的发病密切相关。