自 2010 年以来,他一直致力于通过分子束外延 (MBE) 制造此类材料,并通过角度和自旋分辨光发射和逆光发射光谱 (PES 和 IPES) 对其进行原位表征。这项研究是在内部或大型设施(如位于的里雅斯特的 Elettra 同步加速器光源)上完成的,利用了 X 射线磁圆二色性 (XMCD) 或近边 X 射线吸收精细结构光谱 (NEXAFS) 等特殊技术。与米兰意大利理工学院纳米科学与技术中心的合作得到了认可,重点是表征用于有机电子和有机太阳能电池的可溶液加工新型材料。
在这里,我将展示我们最近的研究工作,这些工作致力于研究中性分子中的电荷迁移及其在操纵光化学和光物理过程结果中的应用。我们利用我们的新光源发出几飞秒的紫外脉冲 [3],以便在电离阈值以下进行光激发并触发手性分子乳酸甲酯中的电子动力学。我们使用时间分辨的光电子圆二色性 (TR-PECD) 对电荷迁移进行成像,并首次揭示其对分子手性响应的影响。我们表明,电荷迁移能够实现超快手性光学开关效应,其中 PECD 产生的光电子电流的幅度和方向可以在低于 10 fs 的时间尺度上控制 [4]。这些结果为利用电荷导向反应性在电子时间尺度上控制物质的手性性质提供了重要的视角。
磁化动力学的轨道分量(例如由铁磁共振 (FMR) 激发的轨道分量)可能在纳米磁性器件中产生“轨道电子”效应。然而,区分轨道动力学和自旋动力学仍然是一个挑战。在这里,我们采用 X 射线磁圆二色性 (XMCD) 来量化 Ni 80 Fe 20 薄膜中 FMR 诱导动力学的轨道分量和自旋分量之间的比率。通过在 Ni L 3 ; 2 边缘应用 XMCD 求和规则,我们获得动态磁化的轨道自旋比为 0.108 6 0.005。该值与静态磁化的 0.102 6 0.008 一致,使用与动态 XMCD 实验相同的 X 射线束配置进行探测。所展示的方法提出了一种可能的途径,可以将轨道电子效应与磁性介质中的自旋电子对应物区分开来。
Lin、Hong-Ji Lin 和 Chien-Te Chen,“由于自旋极化电荷转移,磁铁矿纳米粒子的碳封装可增强室温下的磁性”,应用物理快报 118,072403 (2021)。 1.1.3 Jiann-Shing Lee*、Yuan-Jhe Song、Hua-Shu Hsu、Chun-Rong Lin、Jing-Ya Huang 和 Jiunn Chen*,“碳包覆磁铁矿纳米粒子的磁性增强”,合金与化合物杂志 790, 716-722 (2019) 1.1.4 Jiunn Chen*、Hua-Shu Hsu、Ya-Huei Huang、Di-Jing Huang,“磁铁矿中自旋相关的光学电荷转移来自透射光磁圆二色性”,物理评论 B 98, 085141 (2018) 1.1.5 Jiunn Chen*、Yi-Shao Lai、Yi-Wun Wang、CR Kao,“Al-Cu 金属间化合物生长行为研究”,微电子可靠性 51, 125-129 (2011),(邀请论文) 1.1.6 HS Hsu*、PY Chung、JH Zhang、SJ Sun、H. Chou、HC Su、CH Lee、J. Chen 和 JCA Huang “Observation of bias-dependent low field positive magneto-resistance in Co-doped amorphous carbon films” Applied Physics Letters 97, 032503 (2010).
摘要:本文对钇铁石榴石 (Y 3 Fe 5 O 12 , YIG) 和赤铁矿 ( α -Fe 2 O 3 ) 光催化分解水的性能进行了详细的光谱和动力学比较。尽管电子结构相似,但 YIG 作为水氧化催化剂的性能明显优于赤铁矿,光电流密度提高了近一个数量级,法拉第效率提高了两倍。通过超快、表面敏感的 XUV 光谱探测电荷和自旋动力学表明,性能增强的原因在于 1) 与赤铁矿相比,YIG 中的极化子形成减少;2) YIG 中催化光电流的固有自旋极化。线性 XUV 测量表明,与赤铁矿相比,YIG 中表面电子极化子的形成显著减少,这是由于 YIG 中位点相关的电子-声子耦合在光激发时导致自旋极化电流。使用 XUV 磁圆二色性直接观察 Fe M 2 、 3 和 OL 1 边缘的表面自旋积累和化学状态分辨率,提供了自旋极化电子动力学的详细图像。总之,这些结果表明 YIG 是高效自旋选择性光催化的新平台。
图2:Evodiff会产生逼真的和结构上的蛋白质序列。(a)用于评估Evodiff序列模型产生的序列的可折叠性和自洽的工作流量。(b-c)可折叠性的分布,通过序列PLDDT的序列(b)的序列PLDT衡量,以及通过scperperxity(C)测量的自谐度,用于测试集,Evodiff模型和基础线的序列(n = 1000个序列;每个模型;盒子图显示Me-Dian和Internetrokile范围)。(d)序列PLDDT与测试集(灰色,n = 1000)和640M参数OADM模型Evodiff-seq(蓝色,n = 1000)的序列相对于scperperxity。(e)从Evodiff-Seq(640m参数OADM模型)中成功表达和表征无条件的世代的结构和指标。omegafold预测,并报告了每个结构的平均PLDDT。%的覆盖率和对最高爆炸击中的%身份在每个设计下面表示。(f)(e)设计序列的圆二色性(CD)光谱。(g)从CD光谱(蓝色)与Omegafold(灰色)推断出的每个序列的结构组成。Alphafold预测包含在图中S6进行比较。
摘要:化脓性链球菌 Cas9 蛋白 (SpCas9) 是微生物中基于 CRISPR 的免疫系统的一个组成部分,已广泛用于基因组编辑。该核酸酶与向导 RNA (gRNA) 形成核糖核蛋白 (RNP) 复合物,从而诱导 Cas9 结构变化并触发其切割活性。在这里,电子圆二色性 (ECD) 光谱用于确认 RNP 的形成并确定其各个组成部分。ECD 光谱具有区分 Cas9 和 gRNA 的特征,前者显示出负/正谱,最大值位于 221、209 和 196 nm,而后者显示出正/负/正/负模式,条带分别位于 266、242、222 和 209 nm。首次展示了 gRNA:Cas9 RNP 复合物的实验 ECD 光谱。它表现出双标记正/负 ECD 偶联,最大值位于 273 和 235 nm,并且与每个 RNP 成分的单独光谱有显著不同。此外,Cas9 蛋白和 RNP 复合物在 ECD 测量后仍保留生物活性,并且它们能够在体外结合和裂解 DNA。因此,我们得出结论,ECD 光谱可被视为一种快速且无损的方法,用于监测 Cas9 蛋白因 Cas9 和 gRNA 相互作用而发生的构象变化,以及鉴定 gRNA:Cas9 RNP 复合物。
图 1 | 使用 DNA 支架形成 Cy3 聚集体的化学方法。 (a) Cy3 (左) 共价连接到单链 DNA (ss-DNA) 脱氧核糖磷酸骨架的 3' 和 5' 端。 Cy3 修饰的 DNA 纳米结构是通过将 Cy3 修饰的 ssDNA 与规范互补的 ssDNA 链杂交而形成的,如连接到 DNA 双链体的 Cy3 单体的分子动力学快照 (中间) 和示意图 (右、上) 中蓝色椭圆表示 Cy3 所示。 Cy3 二聚体和三聚体是通过将连续的 Cy3 发色团连接到 ssDNA 并与互补链杂交而形成的 (右、中和下) (b) Cy3 单体 (棕色)、二聚体 (蓝色) 和三聚体 (绿色) 的吸光度 (实线) 和量子产率归一化的荧光光谱 (虚线)。 [DNA 双链] = 0.5 µ M,溶于 40 mM Tris、20 mM 醋酸盐、2 mM 乙二胺四羧酸 (EDTA) 和 12 mM MgCl 2 (TAE-MgCl 2 缓冲液)。(c) 双链中 Cy3 单体、二聚体和三聚体的荧光量子产量 (ΦF)。[DNA 双链] = 0.5 µ M,溶于 1 × TAE-MgCl 2 缓冲液。(d) Cy3 单体、二聚体和三聚体的圆二色性 (CD) 光谱。(e) Cy3 单体、二聚体和三聚体的荧光衰减轨迹,仪器响应函数以黑色显示。
摘要:全dielectric Metasurfaces中连续体(BIC)中的结合状态增强了纳米级的光 - 物质相互作用,因为它们的无限Q因子和强场限制。在已经报道的各种现象中,它们对手性光的影响最近引起了极大的兴趣。在这里,我们研究了与si nanorod二聚体在石英底物上制成的各种跨膜相关的固有和外在光学手性的出现,比较了三种情况,比较了三种情况:平行的纳米棒(中性)(中性),移位和倾斜的二聚体,/倾斜的二聚体,/ lone Index Matchex Matte Exex Matching Matching Matters Matterspertrate。我们分析了远场(FF)相互作用的圆二色性(CD)和近场(NF)分布的螺旋性。我们表明,基于外部手性,在FF中实现手性反应的最佳方法是利用出现在倾斜的纳米棒二聚体的情况下出现的准BIC(Q-BIC)。相比之下,在变化二聚体的情况下,螺旋密度大大增强,因为它具有内在的手性,其值比圆形极化平面波大2个数量级。这些所谓的超细电磁场集中在元表面内的纳米级上,有望在诸如强耦合,光致发光发射或其他局部光的现象中具有吸引人的意义。关键字:超级手续光,连续性,手性,螺旋性,近场