毫米级、大面积均匀半导体器件分层用于物理故障分析和质量控制 Pawel Nowakowski*、Mary Ray、Paul Fischione EA Fischione Instruments,Export,宾夕法尼亚州,美国* 通讯作者:p_nowakowski@fischione.com 不断发展的微电子设备设计越来越复杂、越来越紧凑和越来越小。这些设计可能包括越来越多的层、三维 (3D) 垂直堆叠、气隙和不同的材料成分。大批量半导体器件制造需要强大的质量控制和故障分析过程。过去几十年来,已经开发出了许多故障分析技术,包括非破坏性和破坏性技术 [1-3]。一种非常流行的技术是器件分层,即从上到下控制地去除器件层。通过这种技术获得的信息可以支持质量控制、故障分析工作、成品和工艺改进数据以及逆向工程。
不均匀性对量子材料的特性至关重要,但是可以测量它们的方法仍然有限,并且只能访问相关可观察的一小部分。例如,诸如扫描隧道显微镜之类的局部探针已经证明,在纳米长度尺度上,丘比特超导体的电子特性是不均匀的。但是,需要解决高阶相关性的互补技术以阐明这些不均匀性的性质。此外,局部隧道探针通常仅远低于临界温度。在这里,我们开发了一种二维的Terahertz光谱法,以测量来自近乎掺杂的丘陵中层间间的隧道共振的Josephson等离子体回声。这项技术使我们能够研究材料中层偶联的多维光学响应,并从外部无均匀的无均匀宽扩展中拓宽了材料中的固有寿命扩大,以实现中间层间隧道隧道。我们发现,不均匀的扩展持续到临界温度的很大一部分,而这在高于热量增加的寿命拓宽之上可以克服。
摘要:同一主链中具有差异性拓扑(高阶结构)结构域的一维纳米纤维的合成是现代超分子聚合物化学的挑战性主题之一。通过外部刺激对超分子聚合物链的非均匀结构转化可以使这种纳米纤维制备。为了证明这种聚合后策略的可行性,我们从巴比妥酸盐单体中制备了光反应性的旋转折叠超折叠的超聚合物,该单体含有偶氮苯嵌入的刚性P-P-互轭支架。与以前的螺旋折叠超分子聚合物相比,由更灵活的偶氮苯单体组成,UV-Light诱导的新制备的螺旋折叠折叠的超分子聚合物的展开是不均匀的,发生了不均匀的,可提供折叠和无折叠域的拓扑块共聚物。这种块状共聚物的形成表明,光诱导的螺旋折叠结构的展开是从相对灵活的部分(例如末端或缺陷)启动的。在可见光照射后,随后衰老以恢复完全折叠的结构后,观察到了展开的结构域的自发重折叠。
硅纳米结构(如纳米式阵列)在各种应用中具有巨大的潜力,例如光伏电池[1],传感器[2],信息存储[3],仅举几例。纳米果(NNS)被定义为具有较高纵横比的纳米材料。那些属于两个主要类别:单针,外部操纵以接触细胞和组织(近场显微镜(AFM),微型操纵器)或支持基板支撑的垂直高纵横比纳米结构的阵列。前者涵盖了各种纳米结构,包括纳米线,纳米柱,多孔纳米酮,纳米管和纳米膜。各种材料/尺寸/形状使每种类型的NN具有不同的特定感应需求的特性,也就是说,在机械生物学,纳米电机生理学,光遗传学,纳米遗传学,转染/载体化/矢量化(药物输送)中,各种应用[4] [4]。
抽象背景超出观察到的细胞结构和线粒体的改变,将罕见的遗传突变与受脱敏突变影响的患者的心力衰竭发展联系在一起的机制尚不清楚,这是由于缺乏相关的人类心肌细胞模型。阐明线粒体在这些机制中的作用的方法,我们研究了源自人类诱导的多能干细胞的心肌细胞,这些干细胞带有杂合的DES E439K突变,这些干细胞是从患者中分离出来的,或者是由基因编辑产生的。为了提高生理相关性,在各向异性的微图案表面上培养心肌细胞以获得伸长和比对的心肌细胞,或者作为心脏球体,以创建微生物。在适用的情况下,通过突然死于携带DES E439K突变的家族的患者的心脏活检证实了心肌细胞的结果,并从五个对照健康的供体中验尸中的心脏样本。结果杂合DES E439K突变导致心肌细胞的总体细胞结构的巨大变化,包括细胞大小和形态。最重要的是,突变的心肌细胞显示出改变的线粒体结构,线粒体呼吸能力和代谢活性,让人联想到患者心脏组织中观察到的缺陷。最后,为了挑战病理机制,我们将正常的线粒体转移到突变体心肌细胞内,并证明这种治疗方法能够恢复心肌细胞的线粒体和收缩功能。结论这项工作突出了DES E439K突变的有害作用,证明了Mito-软骨异常在与Desmin相关心肌病的病理生理学中的关键作用,并为这种疾病打开了新的潜在治疗观点。
使用多层结构实现了空气中正极表面等离子体在空气中的均匀传播,该结构由硅晶片组成,由1 µm厚的介电SiO 2层作为传播表面覆盖。而不是在使用常规散装电介质表面时在相同条件下观察到的分支流媒体,该等离子体表现出具有高度可重复性和稳定性的同质环形结构。血浆是通过在接触介电表面的钨电线上施加纳秒正脉冲来产生的。血浆以高空间分辨率进行单射击操作成像,紫外反射显微镜以及快速加强的电荷耦合耦合器件摄像头。时间和空间分辨的光学发射光谱表明,均匀的环对应于具有高N 2 + *发射区域的电离前端的传播。我们讨论了环形电离波的起源,考虑到Si-Sio 2界面的作用以及外部光源照明的效果。环电离波可能是由于分支抑制作用而导致的,这是由于在血浆发出的光子产生的界面处的光电效应。在大气压力下的环境空气中,稳定均匀的表面电离波的产生可能引起进一步的晚期等离子表面相互作用研究或流动控制应用。
我将使用协变量1+1+2分解方法引入一个动力学制度,以实现不均匀的LRS-II空位,这是我们最近在2404.01161中提出的。我们的方法从共同观察者的角度描述了LRS-II动力学。促进协方差动力学数量的协变量径向衍生物对新的动力学变量,并利用共价时间和径向衍生物之间的换向关系,我们已经能够证明可以证明,可以构建一个构建一阶普通微分方程的自主系统以及某些纯粹的Algebraic构造。我将在LRS-II相位空间中谈论一些有趣的功能,其中一个是均匀的解决方案构成了不变的子手机。对于LTB的特定情况,我表明可以恢复一些先前已知的结果。演讲将基于我们最近的工作2404.01161
《药物供应链和安全法》(DSCSA)的最终阶段引入了针对分配器的新要求,包括用于药物的全电子,可互操作的物品级可追溯性。查看更多
对Bogomolny-Prasad-Sommerfield(BPS)限制的不均匀的Abelian Higgs模型均针对相对论和非遗体主义制度研究了。尽管空间翻译的对称性因不均匀性而破坏,但延伸到N¼1超对称理论。四分之一的标量电势具有最小值,具体取决于杂质的强度,但在空间渐近线下具有破碎的相位。破碎相的真空构型既不是常数也不是标量电势的最小值,而是被发现是bogomolny方程的非平凡解。虽然其能量密度和磁场是由空间坐标的功能给出的,但能量和磁通量保持为零。磁杂质项的符号允许BPS扇区或抗BPS扇区,但不能同时进行。因此,所获得的溶液被确定为最小零能量的新型不均匀损坏的真空。在存在旋转对称的高斯类型不均匀性的情况下,还获得了拓扑涡流溶液,并且对杂质对涡流的影响进行了数值分析。
抽象肥胖与神经认知功能障碍有关,包括记忆缺陷。当肥胖症在青春期发生时,这尤其令人担忧,这是认知至关重要的脑结构的成熟时期。在啮齿动物模型中,我们最近报道说,在周期期间,通过腹侧海马(VHPC)的化学遗传操纵可以逆转肥胖的高脂饮食(HFD)摄入诱导的记忆障碍。在这里,我们在HFD喂养的雄性小鼠中使用了交叉病毒方法,以使特定的特定的VHPC传播途径在记忆任务期间向伏隔核(NAC)或内侧前额叶皮层(NAC)或内侧前额叶皮层(MPFC)使用。我们首先证明了训练后HFD增强了两种途径的激活,并且我们的化学方法可以有效地使这种激活归一化。VHPC-NAC途径的失活挽救了HFD诱导的识别中的缺陷,但没有位置记忆。 相反,VHPC – MPFC途径的灭活恢复了位置,但没有HFD产生的识别记忆障碍。 操纵途径不影响探索或类似焦虑的行为。 这些发现表明,整个青春期的HFD摄入量通过过度促进特定海马传出途径而损害不同类型的记忆,并且针对这些过度活跃途径具有治疗潜力。VHPC-NAC途径的失活挽救了HFD诱导的识别中的缺陷,但没有位置记忆。相反,VHPC – MPFC途径的灭活恢复了位置,但没有HFD产生的识别记忆障碍。操纵途径不影响探索或类似焦虑的行为。这些发现表明,整个青春期的HFD摄入量通过过度促进特定海马传出途径而损害不同类型的记忆,并且针对这些过度活跃途径具有治疗潜力。