单原子催化是当代科学中至关重要的领域,因为它具有出色的结合均匀和异质催化的领域的能力。铁和锰金属酶在自然界中具有有效的C- H氧化反应有效,激发了科学家在人工催化系统中模仿其活性位点。在此,成功地使用了一种简单而多功能的阳离子交换方法来稳定Poly(Heptazine Imides)(PHI)中的低成本铁和锰单原子。所得材料被用作甲苯氧化的光催化剂,表现出对苯甲醛的显着选择性。然后将方案扩展到不同底物的选择性氧化,包括(固定的)烷基芳烃,苄基醇和硫酸盐。详细的机理研究表明,含铁和锰的光催化剂通过形成高价值M o物种通过类似的机制来起作用。操作X射线吸收光谱(XAS)用于确认形成高价值铁和锰氧化物种,通常在参与高度选择性C- H氧化的金属酶中发现。
图3:在这项工作中探索的四个温度下,压缩(黑色实线)和减压(红色实线)循环的全局四面体阶参数f Th。面板(a)在t = 80 k时报告循环,面板(b)在t = 100 k,面板(c),t = 120 k和t = 140 k的面板(d)。箭头表示压缩/减压的方向。圆圈代表拐点的基因座。
发现,在负载下测量的包装中的瞬时不平衡会随着平行字符串的添加以及较宽的母线电阻分布而增加。这可能会驱动包装细胞不均匀降解。此外,母线中的开路断层似乎会导致永久性失衡和包装容量的严重缺乏。
在这篇短文中,我将展示 Alhejji 和 Smith 最近的研究成果 [arXiv:1909.00787] 如何得出经典条件熵的最佳均匀连续性界限,从而得出经典量子态的量子条件熵的最佳均匀连续性界限。这个界限是最优的,因为总存在一对经典量子态达到界限的饱和,因此不可能再进一步改进。一个直接的应用是形成纠缠的均匀连续性界限,它改进了 Winter 先前在 [arXiv:1507.07775] 中给出的界限。关于条件熵的其他可能的均匀连续性界限,提出了两个有趣的未解决的问题,一个是关于量子经典态,另一个是关于完全量子二分态。
©作者2023。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
摘要:功能选择(FS)代表了许多基于机器学习的预测前维护(PDM)应用程序的重要步骤,包括各种工业流程,组件和监视任务。所选功能不仅是学习模型的输入,而且还可以影响进一步的决策和分析,例如,PDM系统的传感器选择和可理解性。因此,在部署PDM系统之前,至关重要的是检查输入数据中所选特征的可重复性和鲁棒性。这对于具有较低样本比率比(SDR)的现实世界数据集特别重要。然而,据我们所知,在PDM的领域尚未考虑FS方法在数据变化下的稳定性。本文通过铣削中的工具状况监测来解决此问题,其中采用了基于支持向量机和随机森林的分类器。我们使用五倍的交叉验证来评估三种流行的基于滤波器的FS方法,即Fisher评分,最小冗余最大相关性(MRMR)和RERIEFF,以稳定性和宏F1表示。此外,对于每种方法,我们研究了同质FS集合对两个性能指标的影响。为了获得广泛的见解,我们使用了从我们的实验和NASA的存储库中获得的四个(2:2)的铣削数据集,它们在操作条件,传感器,SDR,类等方面有所不同。对于每个数据集,对两个单独的传感器及其融合进行了研究。(2)在大多数情况下,Fisher得分(单和/或合奏)优越。在结论中:(1)不同的FS方法可以产生可比的宏F1,但FS稳定性值大为不同。(3)MRMR的稳定性总体上是不同设置(例如传感器,子集基数)的最低,最大的稳定性,并且是从整体中最有益的一种。
计算和实验能力的提高正在迅速增加日常生成的科学数据量。在受内存和计算强度限制的应用中,过大的数据集可能会阻碍科学发现,因此数据缩减成为数据驱动方法的关键组成部分。数据集在两个方向上增长:数据点的数量和维数。降维通常旨在在低维空间中描述每个数据样本,而这里的重点是减少数据点的数量。提出了一种选择数据点的策略,使它们均匀地跨越数据的相空间。所提出的算法依赖于估计数据的概率图并使用它来构建接受概率。当仅使用数据集的一小部分来构建概率图时,使用迭代方法来准确估计稀有数据点的概率。不是对相空间进行分组来估计概率图,而是用正则化流来近似其函数形式。因此,该方法自然可以扩展到高维数据集。所提出的框架被证明是在拥有大量数据时实现数据高效机器学习的可行途径。
摘要:电铸层厚度不均匀性是制约电铸微金属器件发展的瓶颈问题。微齿轮是各类微器件的关键元件,本文提出了一种提高其厚度均匀性的新制备方法。通过仿真分析研究了光刻胶厚度对均匀性的影响,结果表明随着光刻胶厚度的增加,电流密度的边缘效应减小,电铸齿轮的厚度不均匀性会减小。与传统的一步正面光刻和电铸方法不同,该方法采用多步自对准光刻和电铸工艺制备微齿轮结构,在交替光刻和电铸过程中间歇地保持光刻胶厚度的降低。实验结果表明,该方法制备的微齿轮厚度均匀性比传统方法提高了45.7%。同时,齿轮结构中部区域的粗糙度降低了17.4%。
铁电体 (FE) 具有自发和可切换的电极化,不仅在基础科学领域,而且在器件应用领域都具有重要意义。传统的铁电性,例如钙钛矿氧化物 BaTiO 3 中的铁电性,归因于 Ti d 0 和氧 p 态之间的 pd 杂化,其中长程库仑力优于短程排斥力 [1]。结果,BaTiO 3 中 Ti 偏心位移被诱导,从而破坏了中心对称性。在钙钛矿超晶格如ABO3/A'BO3和层状钙钛矿(ABO3)2(AO)[2-4]中发现的“混合不当”铁电性具有不同的起源,它源于A位上的极性模式与BO6八面体的两个非极性倾斜模式之间的三线性耦合。该机制更多地依赖于晶格的几何形状(即不同层上A阳离子的反极性位移之间的非完全补偿),而不是像传统FE那样依赖于静电力[5,6]。已经提出了不同的方法来操纵铁电性。施加在薄膜上的应变可以影响BaTiO3的电极化,也可以使量子顺电的SrTiO3变为铁电体,甚至提高其转变温度[7,8]。电荷掺杂已被证明是调节铁电性和创造新相的另一种有效方式。在传统铁电材料如 LiNbO 3 和 BaTiO 3 中,可以通过增加掺杂载流子的数量来抑制铁电位移 [9–12]。而在层状钙钛矿的三线性 Ruddlesden-Popper 相中,最近的一项研究表明,在 A 3 Sn 2 O 7 中静电掺杂会导致八面体旋转增加 [13],从而增强极化。由于载流子可以屏蔽长程相互作用并倾向于保持中心对称性,因此铁电性与金属性共存是违反直觉的。这种不寻常的共存直到 2013 年才被发现,当时 LiOsO 3 被认定为第一个“极性金属” [14] − 比它的理论预测晚了六十年 [15]。最近的研究表明,二维拓扑半金属WTe 2 也表现出可切换的极化[16]。
b'porous [13]或树突[14]生长形态。[9]在基于TFSI的电解质中检测到具有不同形状的半球3D颗粒,这是施加电流密度的函数。[12]在Mg(TFSI)2盐电解质中,MGCL 2作为添加剂,连续的剥离和镀金导致SEI层的破裂和改革,从而在相应的断裂部位和不均匀的MG沉积中产生大量有效的电流密度。[13]通过这种机制,半球形沉积物进一步降解为多孔形态和被困的沉积物,这些沉积物是不可逆转地损失的。最极端的非均匀Mg生长形式是树突的形成,在mg阳极下发生的频率要小得多。到目前为止,仅在0.921 MACM 2的电流密度下仅针对MEMGCL的0.5 MOLDM 3溶液检测到树突。[14]'