全球对可再生能源的需求不断增长,这加剧了对生物质转化的研究,其中异相催化成为优化生物燃料生产效率和可持续性的关键技术。生物质是一种复杂的有机原料,其催化转化涉及固液和固气界面上复杂的动力学和热力学相互作用。了解这些相互作用对于提高催化剂性能、反应选择性和整体工艺效率至关重要。本研究探讨了生物质转化中异相催化的动力学和热力学建模,重点研究了控制热解、气化、热液液化和生物乙醇合成的催化机制。对 Langmuir-Hinshelwood、Eley-Rideal 和幂律模型等动力学模型进行了评估,以描述反应速率对催化剂表面特性、原料成分和工艺条件的依赖性。此外,热力学模型提供了对反应可行性、能量障碍和相平衡的洞察,这对于优化反应途径至关重要。本文还回顾了计算建模的最新进展,包括密度泛函理论 (DFT)、蒙特卡罗模拟和基于机器学习的预测模型,以了解它们在加速催化剂设计和反应优化方面的作用。动力学和热力学见解的结合使得合理设计具有增强的活性、稳定性和对生物质衍生燃料和化学品的选择性的催化剂成为可能。尽管取得了重大进展,但由于催化剂失活、工艺多变性和能源密集型再生方法,将实验室模型扩展到工业应用仍然存在挑战。未来的研究应侧重于开发稳健的多尺度模型,将实验数据与人工智能驱动的模拟相结合,以推动生物质转化为能源技术的创新。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
关于加速净零应用催化剂开发周期简介:此信息请求 (RFI) 的目的是征求对潜在 ARPA-E 计划的意见,该计划专注于加速非均相催化剂开发周期,以纳入与美国 2050 年净零目标相关的反应堆、设备、装置操作和工艺技术应用。这些材料开发周期可能需要数十年才能完成,从毫克数量的发现规模开始,到千克数量的开发规模结束。ARPA-E 有意将开发周期(图 1)缩短至数月,同时显着提高能源效率、减少排放和/或减少贵金属。该过程中的主要瓶颈包括低效的发现、不可重复的多尺度合成、费力的表征、狭窄的设计空间优化、不相关的性能评估以及非均相催化剂与新兴技术的不切实际的集成(即不是“插入式”)。
6. Chu, W.- Y. ; Culakova, Z.; Goldberg, KI “恢复地球碳循环平衡:展望使用二氧化碳合成化学品和燃料的可持续未来” 巴纳德学院化学系 2018,受邀研讨会发言人。 7. Chu, W.- Y. ; Culakova, Z.; Goldberg, KI “过渡金属催化二氧化碳和羰基化合物加氢” ACS 全国会议 2018,Kubiak 教授颁奖研讨会,路易斯安那州新奥尔良,受邀口头报告。 8. Chu, W.- Y. ; Culakova, Z.; Goldberg, KI “过渡金属催化二氧化碳和羰基化合物加氢” ACS 全国会议 2018,Kubiak 教授颁奖研讨会,路易斯安那州新奥尔良,受邀口头报告。 9. Chu, W. -Y. ; Goldberg, KI “原子经济性均相催化还原 CO2 为大宗化学品”ACS 全国会议 2018,路易斯安那州新奥尔良,海报展示。10. Chu, W.-Y. ; Culakova, Z.; Goldberg, KI “均相催化还原 CO2 为 MeOH,
本书介绍了化学反应工程的定量处理。我们认为,本书的介绍水平适合一学期的课程。本书提供了一种平衡的方法来理解:(1)均相和非均相反应系统,以及(2)化学反应工程和化学反应器工程。我们在本书的许多章节中都模仿了 Michel Boudart 教授的教学。例如,第 1 章和第 4 章的大部分内容都是仿照他那本现已绝版的优秀教材(《动力学 a/化学过程》)编写的,但它们已经进行了扩展和更新。每章都包含许多练习题和小插图。我们使用小插图为读者提供有关文中描述的分子和/或分析的实际商业流程和/或用途的讨论。因此,小插图将呈现的材料与我们周围世界发生的事情联系起来,以便读者了解化学反应工程及其原理如何影响日常生活。本书中的许多问题都需要数值解。读者应该寻找合适的软件来正确解决这些问题。由于这些软件丰富且不断改进,读者应该能够轻松找到必要的软件。这项练习对学生很有用,因为他们在离开学术机构时需要这样做。完成整个文本将让读者有机会尝试
图 4. Gegelati(我们的)和 Kelly 的代码(参考)[ 10 ] 的相对连续训练时间。在每场游戏中,TPG 训练 5 次,共 50 代。对于每对游戏和代码,垂直线从最小训练时间跨越到最大训练时间,水平线是平均训练时间。所有时间均相对于图中显示的平均参考训练时间。
绝对最大额定值仅为应力额定值。在这些最大额定值或超出这些最大额定值的情况下运行可能会对设备造成永久性损坏。在超出额定工作条件的情况下运行,电气规格不适用。长时间超出额定工作条件可能会影响设备可靠性。除非另有说明,否则所有电压均相对于相关的 COMMON 引脚指定。正引脚电流表示从引脚流出的电流。
摘要:在过去的几十年中,X 射线吸收光谱 (XAS) 已成为探测非均相催化剂结构和成分、揭示活性位点的性质以及建立催化剂结构模式、局部电子结构和催化性能之间联系的不可或缺的方法。本文将讨论 XAS 方法的基本原理,并描述用于解读 X 射线吸收近边结构 (XANES) 和扩展 X 射线吸收精细结构 (EXAFS) 光谱的仪器和数据分析方法的进展。本文将介绍 XAS 在非均相催化领域的最新应用,重点介绍与电催化相关的示例。后者是一个快速发展的领域,具有广泛的工业应用,但在实验表征限制和所需的高级建模方法方面也面临着独特的挑战。本综述将重点介绍使用 XAS 对复杂的现实世界电催化剂获得的新见解,包括其工作机制和化学反应过程中发生的动态过程。更具体地说,我们将讨论原位和原位 XAS 的应用,以探测催化剂与环境(载体、电解质、配体、吸附物、反应产物和中间体)的相互作用及其在适应反应条件时的结构、化学和电子转变。
全世界从事化学物理研究的研究人员都知道 Vladislav Voevodsky 院士的名字。他的努力和才华使得气体链式支链反应、烃类裂解反应以及自由基和原子的非均相反应的研究取得了许多关键进展。Voevodsky 院士是最早认识到磁共振技术在研究自由基和其他顺磁性粒子方面的潜力的人之一。他和他的同事将 EPR 技术发展成为一种研究化学反应的强大实验方法,创立了一个新的科学领域 — — 化学放射光谱学。这项工作反过来又导致了许多基本化学现象研究的突破,包括化学反应的自由基机制、电子离域和转移、固体和液体物质辐解中的基本行为、光化学和光生物过程的机制以及非均相催化。 Voevodsky 院士是化学动力学和燃烧研究所(俄罗斯新西伯利亚)和新西伯利亚国立大学自然科学系的创始人之一。多年来,他一直担任该系主任。他培养并激励了一群世界知名的科学家,他们至今仍在从事化学物理学研究。他的学生对化学动力学和化学物理学的发展产生了重大影响——这是一门描述