资料来源:AQR、XPressFeed、S&P、MSCI Barra。我们从 1975 年到 2019 年每年 1 月 1 日开始运行 45 个单独的策略模拟,所有模拟都于 2019 年 12 月 31 日结束。对于直接指数化,我们每月都会将税收成本和交易成本降至最低,但前提是保持在与标准普尔 500 指数的预先指定的跟踪误差(使用 MSCI Barra 风险模型计算)范围内。对于 130/30 和 150/50,在每月重新平衡中,我们最大化价值动量因子模型的敞口,并将税收成本和交易成本降至最低,但前提是保持在与标准普尔 500 指数的预先指定的跟踪误差(使用 MSCI Barra 风险模型计算)范围内。交易成本根据 VIX、股票风险和相对于股票交易量的交易量计算。对于税收成本,我们模拟了两种替代税率假设:2020 年税率制度和拟议的拜登税收计划制度。在 2020 年税率制度下,短期资本收益的税率假设为 40.8%,长期资本收益和股息收入的税率假设为 23.8%。我们假设,根据拜登税收计划,所有收益和股息均按 43.4% 的统一税率征税。在报告税收优惠时,我们会分别针对只能抵消长期资本收益的投资者和可以同时抵消长期资本收益和短期资本收益的投资者计算税收优惠。此外,我们通过计算有效税率或未来税负的预期现值来核算未实现资本收益。我们对 2020 年税率制度和拜登税收计划制度分别采用 10% 和 25% 的有效税率。最后,所有税收优惠均相对于基准计算,基准被建模为直接持有被动 ETF,该 ETF 分配股息收入但不产生任何资本收益,并且所有其他建模选择(资本流动、慈善捐款和税率)均一致应用。
在相关努力中,[10] 我们扩展了适用于均相 FRET 检测的分子识别元件列表,包括变构转录因子 (aTF),这是一类特定的底物结合蛋白,可在离散蛋白质结构域中结合 DNA 和小分子效应物。在这里,我们描述了使用特征明确的 aTF TetR 进行分子识别的其他新型传感器,使用改变 aTF-DNA 结合亲和力的 aTF 变体来调节传感器灵敏度,并展示了一种带有遗传编码供体荧光团的额外传感器设计。这些额外的传感器展示了我们方法的普遍性,同时详细介绍了一种更容易被各种研究小组采用的传感器设计。变构转录因子是调节蛋白,包含 DNA 结合结构域和效应物结合结构域,能够以高特异性和选择性识别小分子。 [11] 在目标分析物存在的情况下,aTF 对其 DNA 结合序列的亲和力会受到调节,从而促进下游基因表达的阻遏物或去阻遏物调节。[11] aTF 与其同源 DNA 和效应配体之间独特但相互关联的结合提供了一种内在的转导机制,我们将其与 FRET 偶联以进行光学读出。[10] 其他先前描述的基于底物结合蛋白的 FRET 传感器通过染料标记的配体的置换(竞争性测定)或蛋白质的构象变化来实现供体-受体距离的变化。[6,7] 我们的基于 aTF 的 FRET 传感器利用供体标记的 aTF 与其受体标记的同源 DNA 序列的分析物响应性解离来引起供体-受体距离的大幅变化。因此,这些 FRET 传感器无需对配体进行染料标记,因为染料标记会改变配体的结合行为 [12],同时能够通过供体和受体荧光团的完全解离产生显著的信号变化(图 1)。我们之所以选择 TetR 进行这项研究,是因为它是一种特性良好的 aTF,在实验室环境中广泛用于基因调控和诱导蛋白表达。[11] TetR
图 1. 带有原子标记方案的 CuL T . DMSO 复合物的 X 射线晶体结构 ORTEP 图。位移椭球以 50% 概率水平绘制。H 原子显示为任意半径的圆。铜配合物的循环伏安法揭示了对应于 Cu I /Cu II 氧化还原过程的准可逆氧化还原对。采用 DFT 和 TD-DFT 理论在 M062X/6-311**G/ SDD 水平进行的量子计算与实验数据高度一致。结果表明,铜化合物具有比尿素更大的静态和动态超极化率值。例如,H 2 LT 的 β 0 值大约是尿素的 68 倍。结果预测所研究的化合物能够成为优异的二阶和三阶 NLO 材料。所制备的配合物以H 2 O 2 为氧化剂,能有效催化环己烯的均相氧化反应,以CuL Bz 为催化剂,转化率可达98% 。以所研究的配合物为捕集剂,在酚红氧化溴化反应中探究了溴过氧化物酶活性,该配合物可作为溴过氧化物酶的潜在功能模型,CuL Bz 催化剂表现出较好的催化活性,反应速率常数k 为2.203 × 10 5 (mol L -1 ) -2 s -1 。[1] A. Okuniewski,D. Rosiak,J. Chojnacki,B. Becker,具有Hg(Cl, Br, I)O = Chalogen 键和不寻常的Hg2S2(Br/I)4 核的新型配合物。 τ'4 结构参数的实用性,Polyhedron 90 (2015) 47 – 57,https://doi.org/10.1016/j.poly.2018.02.016。[2] Z. Tohidiyan、I. Sheikhshoaie、M. Khaleghi、JT Mague,一种含四齿席夫碱的新型铜 (II) 配合物:合成、光谱、晶体结构、DFT 研究、生物活性及其纳米金属氧化物的制备,J. Mol. Struct. 1134 (2017) 706 – 714,https://doi.org/10.1016/j.molstruc.2017.01.026。 [3] TH Sanatkar、A. Khorshidi、E. Sohouli、J. Janczak,四齿 N2O2 席夫碱配体的两种 Cu(II) 和 Ni(II) 配合物的合成、晶体结构和表征及其在肼电化学传感器制造中的应用,Inorg. Chim. Acta 506 (2020),119537,https://doi.org/10.1016/j.ica.2020.119537。作者非常感谢阿尔及利亚高等教育和科学研究部的财政支持。他们感谢意大利那不勒斯费德雷科 II 大学化学科学系的 Francesco RUFFO 教授和 Angella TUZI 教授的帮助。此外,作者非常感谢法国里昂大学、克劳德伯纳德里昂第一大学、CNRS UMR 5280、分析科学研究所(69622 Villeurbanne Cedex)提供的计算设施。
航空业被公认为欧洲最顶尖的先进技术行业之一,其创新造福于整个社会。荷兰航空业年营业额达 46 亿欧元,是欧洲第六大行业,为 16,900 名员工提供就业机会 1 。该行业主要专注于国际创新和生产链中高质量零部件和软件应用程序的开发和供应,专门从事飞机制造和飞机维护。该行业提供高质量的就业机会。航空业在满足荷兰、欧洲和全世界社会对安全、可靠和可持续的出行需求方面发挥着关键作用。它对经济的影响是巨大的,必须持续下去。预计到 2050 年及以后,航空运输需求将持续增长,因此,旅行必须保持安全、可靠、快速、实惠和环保。社会挑战 欧洲航空研究与创新咨询委员会 (ACARE) 制定了一项战略研究与创新议程 (SRIA 2 ),以实现 Flightpath 2050 3 设定的具有挑战性的目标。航空研究与创新是未来流动性和繁荣以及环境和能源挑战的关键。荷兰航空业可以大大有助于制定应对这些挑战的答案,并开发解决方案来支持 Flightpath 2050 目标,以可持续的方式满足荷兰和其他欧洲公民的流动性需求,加强经济并确保保持这一先进技术领域的工业领先地位。保护环境和能源供应 航空业的国际性质导致欧洲为 2050 年设定了目标。目标是将 CO2 减少 75%、NOx 减少 90% 和噪音减少 65%(均相对于 2000 年)3。需要更轻的飞机、新的推进概念、更高效的发动机和新系统。回收和尽量减少化学物质的使用也将有助于实现目标并有助于 REACH。REACH 是《化学品注册、评估、授权和限制条例》,它简化并改进了欧盟以前的化学品立法框架。基于新材料的轻型航空结构、更高效的发动机、新颖的旋翼机概念以及改进的新型推进概念(例如(混合)电动飞行)将减少燃料消耗。重点是绿色技术和产品的开发,包括生物燃料的使用。使用循环经济方法进行从概念到报废的生命周期分析,有助于减少生产、装配和维护操作中的能源消耗、废物和排放。确保安全和保障 虽然飞机安全在很大程度上取决于进一步减少人为错误,但新的飞机系统和材料将进一步提高航空运输的安全性,加强欧洲的努力。军事航空的主要功能是在当地和全球人口安全中发挥作用。对飞机传感器集成的研究将改善维和行动。保持和扩大工业领导地位 ACARE 设定的目标不仅是为了应对上述社会挑战,也是为了加强工业竞争力和扩大领导地位。竞争来自老牌企业,但 1 NAG 国际宣传册 2017