该装置安装在 AF1300 风洞的控制和仪表框架上。该装置包含 32 个经过校准的压力传感器。每个传感器的输入连接均通过安装在装置前面板上的快速释放压力输入进行。这样可以轻松快速地连接装置和安装在风洞中的实验。所有压力均相对于大气压进行测量。该装置具有一个带滚动开关的一体式液晶显示屏,可随时以四个为一组查看所有 32 个通道。
输入信号电压 (V IN1 ).............................................................................................................................-0.3V 至 16V 输出电压,无负载.............................................................................................................内部限制为 1800V RMS 输出电流......................................................................................................................................... 8.0mA RMS(内部限制) 输出功率......................................................................................................................................................... 6.0W 输入信号电压 (BRITE 输入)..........................................................................................................................-0.3V 至 5.5V 输入信号电压 ( SLEEP ,V SYNC 输入).........................................................................................................-0.3V 至 5.5V 环境工作温度,零气流.........................................................................................................................0°C 至 70°C 存储温度范围.........................................................................................................................................-40°C 至 85°C 注 1:超过这些额定值可能会损坏设备。所有电压均相对于地。电流从指定端子流入为正,流出为负。
现代纳米材料涂层工艺的特点是高温环境和复杂的化学反应,需要精确合成定制设计。这种流动过程极其复杂,除了粘性行为外,还具有传热和传质特性。智能纳米涂层利用磁性纳米粒子,可以通过外部磁场进行操纵。数学模型提供了一种廉价的洞察此类涂层动力学过程固有特性的方法。受此启发,在当前的工作中,开发了一种新的数学模型,用于双催化反应物种在轴对称涂层中扩散,该涂层包裹强制对流边界层流,该流来自浸没在饱和磁性纳米流体的均质非达西多孔介质中的线性轴向拉伸水平圆柱体。其中包括均相和异相反应、热源(例如激光源)和非线性辐射传输。部署了 Tiwari-Das 纳米级模型。使用 Darcy-Forchheimer 阻力公式来模拟多孔介质纤维的体积多孔阻力和二阶惯性阻力。磁性纳米流体是一种水性导电聚合物,由基础流体水和磁性 TiO 2 纳米粒子组成。TiO 2 纳米粒子是一种化学反应物质 (A),还存在第二种物质 (B)(例如氧气),它也发生化学反应。粘性加热和欧姆耗散也包括在内,以产生更物理上真实的热分析。这里提出的具有物质扩散(物质 A 和 B)的非线性守恒方程通过适当的流函数和缩放变量转换为一组非线性联合多阶 ODE。在 MATLAB bvp5c 程序中,使用四点 Gauss-Lobotto 公式求解上升非线性常微分边界值问题。使用 Adams-Moulton 预测校正数值方案(Unix 中编码的 AM2)进行验证。包括速度、温度、物质 A 浓度、物质 B 浓度、表面摩擦、局部努塞尔特数以及物质 A 和 B 局部舍伍德数的广泛可视化。关键词:Darcy-Forchheimer 模型;水性功能磁性聚合物;智能涂层流;二氧化钛纳米颗粒分数;非线性辐射;均相和非均相化学反应;数值;边界层包裹;努塞尔特数;舍伍德数。
绝对最大额定值(注 1) 输入信号电压(V IN1)............................................................................................................................. -0.3V 至 16V 输出电压,无负载.........................................................................................................................内部限制为 1800V RMS 输出电流......................................................................................................................................... 8.0mA RMS(内部限制) 输出功率......................................................................................................................................................... 6.0W 输入信号电压(BRITE 输入)............................................................................................................. -0.3V 至 5.5V 输入信号电压(SLEEP、V SYNC 输入)............................................................................................. -0.3V 至 5.5V 环境工作温度,零气流.........................................................................................................................0°C 至 70°C 存储温度范围......................................................................................................................................... -40°C 至 85°C 注 1:超过这些额定值可能会损坏设备。所有电压均相对于地。电流在指定端子处为正,在指定端子处为负。
(1) 超出“绝对最大额定值”所列的应力可能会对器件造成永久性损坏。这些只是应力额定值,并不暗示器件在这些或任何其他超出“建议工作条件”所列条件的条件下能够正常工作。长时间暴露在绝对最大额定条件下可能会影响器件的可靠性。(2) 除非另有规定,所有电压均相对于地。(3) 如果观察到输入和输出钳位电流额定值,则输入和输出电压额定值可能会超出。(4) 此值最大限制为 5.5 V。(5) 封装热阻抗根据 JESD 51-7 计算。
非均相催化中的高通量实验为在可重复条件下生成大型数据集提供了有效的解决方案。从这些数据集中提取知识大多采用统计方法,旨在优化催化剂配方。先进的机器学习方法与高通量实验相结合,具有巨大的潜力,可以加速预测性地发现当前统计实验设计中不存在的新型催化剂配方。本观点描述了从催化剂合成的统计实验设计到应用于催化剂优化的遗传算法,以及最终使用实验数据进行随机森林机器学习以发现新型催化剂的选择性示例。最后,本观点还展望了应用于材料发现实验数据的先进机器学习方法。
人类正面临着巨大且不断增长的能源需求,因此需要建立在清洁和丰富的可再生能源基础上的新能源模式。1 在此背景下,电催化和光电催化有望使太阳能和风能等可再生能源克服其能量输出的瞬时性。2–6 开发高效、选择性且耐用的催化剂一直是许多研究的重点。本期专题汇集了基础和应用科学的最新进展,涉及(光)电催化剂的合成、特性、机理和性能,用于储能和将小分子转化为有用的特种和商品化学品和燃料。本期重点介绍的电催化剂和光电催化剂包括金属酶、均相和负载分子催化剂以及
(1) 在绝对最大额定值之外运行可能会导致器件永久性损坏。绝对最大额定值并不意味着器件在这些或任何超出建议工作条件所列条件的其他条件下能够正常工作。如果在建议工作条件之外但在绝对最大额定值之内使用,器件可能无法完全正常工作,并且可能会影响器件的可靠性、功能性和性能,并缩短器件寿命。 (2) 除非另有规定,所有电压均相对于地。 (3) 引脚通过二极管钳位到电源轨。过压信号的电压和电流必须限制在最大额定值内。 (4) 有关 I DC 规格,请参阅源极或漏极连续电流表。 (5) 对于 DGK 封装:当 TA = 70°C 以上时,P tot 线性下降 6.7mW/°C。
系/中心/学院名称:化学系 学科代码:CYT-501 课程名称:催化与反应设计的计算方法 LTP:2-0-2 学分:3 学科领域:STAR 课程大纲:量子化学:Hartree-Fock 理论、基组、相关从头算方法、配置相互作用、MP2 理论、耦合簇方法、多参考方法、密度泛函理论、半经验方法、固体和周期模型。几何优化:势能表面的特征、几何优化方法、量子化学方法的几何优化、过渡态和反应路径。速率常数和平衡、统计热力学和平衡、过渡态理论、均相和异相催化、基于计算的示例以了解催化剂在反应中的作用、筛选催化反应以找到最佳催化剂。
当细胞受到低 LET 辐射(60 Co 约为 0.3 keV/µm)时,大多数 DNA 损伤不是由辐射场与 DNA 的直接相互作用引起的,而是由辐解后的化学反应引起的。因此,辐射化学对于理解电离辐射造成的生物损伤的潜在机制至关重要。蒙特卡洛径迹结构 (MCTS) 代码可以详细模拟细胞等介质中的粒子径迹。几种 MCTS 代码已经进一步开发,具有模拟水的辐解和随后的非均相化学的能力。最初的 MCTS 模拟使用纯水作为目标,并叠加 DNA 几何形状来表征物理相互作用(Charlton 1986)。现在,MCTS 代码已经变得更加复杂,可以将电离辐射的物理化学过程与 DNA 几何模型相结合。