本文的重点是使用新工具CRISPR(经常分组的短篇小学重复),该工具可以比其他技术更准确地编辑生物的基因组;在整个文章中,提到了人类中的血管生成,癌症,卡波西肉瘤,帕金森氏症,帕金森氏症,再生和遗传修饰有关的作品,所有这些调查均已使用CRISPR工具。您还可以评论涉及在人类胚胎细胞的DNA中使用该技术的伦理并发症,根据不同的标准,这些并发症会进行改进的人类,这不仅没有对退行性或可治疗疾病的敏感性,而且在物理方面也没有改变与任何病理学相关的身体方面。
黑豆 [ Vigna mungo (L.) Hepper] 是一种营养丰富的豆科作物,主要生长在南亚和东南亚,其中印度的种植面积最大,那里的黑豆作物受到多种生物和非生物胁迫的挑战,导致产量严重损失。改善遗传收益以提高农场产量是黑豆育种计划的主要目标。这可以通过开发对主要疾病(如绿豆黄花叶病、乌豆叶皱缩病毒、尾孢叶斑病、炭疽病、白粉病)和昆虫害虫(如白蝇、豇豆蚜虫、蓟马、茎蝇和豆象)具有抗性的品种来实现。除了提高农场产量外,结合市场偏好的性状还能确保采用优良品种。黑豆育种计划依赖于有限数量的亲本系,导致所开发品种的遗传基础狭窄。为了加速遗传增益,迫切需要纳入更多不同的遗传物质,以改善育种群体的适应性和抗逆性。本综述总结了黑豆的重要性、主要的生物和非生物胁迫、可用的遗传和基因组资源、潜在作物改良的主要性状、它们的遗传以及黑豆用于开发新品种的育种方法。
结果和讨论:我们发现线粒体基因组的长度长度为401,301 bp,其GC含量为45.15%。它由53个基因组成,包括32个蛋白质编码基因,3个核糖体RNA基因和18个转移RNA基因。在线粒体基因组中总共存在146个散射重复序列,8个串联重复序列和124个简单的序列重复序列。对所有蛋白质编码基因的彻底检查揭示了485个RNA编辑和9579个密码子的实例。此外,在角膜软骨基因组和叶绿体基因组中鉴定了57个同源片段,占线粒体基因组的约4.04%的叶绿体基因组。此外,这是一种基于来自属于四个Fabaceae亚家族的33个物种的线粒体基因组数据,而其他家族的两个物种验证了莲花的进化关系。这些发现对理解角膜乳杆菌基因组的组织和演变以及遗传标记物的识别具有重要意义。他们还提供了与制定豆类分子育种和进化分类策略有关的有价值的观点。
花粉粒的数量在物种内和物种间存在差异。然而,与雄蕊细胞分化方面的研究相比,人们对这一数量性状的分子基础知之甚少。最近,通过拟南芥的全基因组关联研究,分离出了第一个负责花粉数量变异的基因 REDUCED POLLEN NUMBER1 (RDP1),并表现出自然选择的特征。该基因编码酵母 Mrt4 (mRNA 转换 4) 的同源物,它是大核糖体亚基的组装因子。然而,没有进一步的数据将核糖体功能与花粉发育联系起来。在这里,我们使用标准 A. thaliana 登录号 Col-0 表征了 RDP1 基因。由 CRISPR/Cas9 产生的移码突变体 rdp1-3 揭示了 RDP1 在开花中的多效性作用,从而表明该基因是花粉发育以外的多种过程所必需的。我们发现,天然的 Col-0 等位基因导致 Bor-4 等位基因的花粉数量减少,这是通过定量互补测试评估的,该测试比转基因实验更敏感。结合通过序列比对确定的 Col-0 中的历史重组事件,这些结果表明 RDP1 的编码序列是导致自然表型变异的候选区域。为了阐明 RDP1 参与的生物学过程,我们进行了转录组分析。我们发现负责核糖体大亚基组装/生物合成的基因在差异调控基因中富集,这支持了 rdp1-3 突变体中核糖体生物合成受到干扰的假设。在花粉发育基因中,编码碱性螺旋-环-螺旋 (bHLH) 转录因子的三个关键基因(ABORTED MICROSPORES ( AMS )、bHLH010 和 bHLH089 )以及 AMS 的直接下游基因在 rdp1-3 突变体中下调。总之,我们的结果表明核糖体通过 RDP1 在花粉发育中发挥特殊功能,RDP1 含有受选择的天然变体。
本文强调了在逻辑上流行的逻辑和扩大人类基因组编辑实践之间的两个关键异步,这阻碍了将新技术的有效转换为公共物品的有效和有序的转换。首先是许多非西方国家所采用的“基因组主权”框架,这些国家可能会加剧全球研究中的数据偏见,并将政策关注远离实现非歧视性和公平性基因组医疗所需的必要结构变化。另一个是参与“大规模科学”的全球缺乏效率:规范新的社会利益组合的挑战,这些挑战通常在传统机构之外,并由“政策购物”提供了争议或实验性研究。这两个问题都表明,基因组研究并不代表一个定义的科学共享,而是一个需要主动“共同”的领域,目的是促进基因组团结,以协调在国家边界内部和跨国家边界内的负责任研究。
转座因子 (TE) 是真核生物基因组中不可或缺的组成部分,在基因调控、重组和环境适应中发挥着多种作用。它们在基因组内移动的能力导致基因表达和 DNA 结构变化。TE 是遗传和进化研究的宝贵标记,有助于遗传图谱和系统发育分析。它们还通过促进基因重排(导致新的基因组合)来深入了解生物体如何适应不断变化的环境。这些重复序列对基因组结构、功能和进化有重大影响。本综述全面介绍了 TE 及其在生物技术中的应用,特别是在植物生物学中,由于其广泛的功能,它们现在被认为是“基因组黄金”。本文讨论了 TE 在植物发育中的各个方面,包括其结构、表观遗传调控、进化模式以及它们在基因编辑和植物分子标记中的应用。目标是系统地了解 TE 并阐明它们在植物生物学中的多种作用。
该文件计划于 2024 年 1 月 30 日在《联邦公报》上公布,并可在线查阅:https://federalregister.gov/d/2024-01788 和 https://govinfo.gov
快速循环繁殖使用转基因早期流动植物,作为杂种父母,促进了多年生作物的繁殖繁殖计划的缩短。使用表达银桦树的BPMADS4基因的转基因基因型T1190建立了苹果的快速周期育种。在这项研究中,T1190及其非转基因的野生型引脚(F1-Offspring'pinova'和'iDared'的F1-OffSpring通过Illumina短阅读测序在两个单独的实验中进行了测序,导致T1190和167×PIS的平均测序深度为182×。测序显示8,450次读取,其中包含≥20bp的序列与植物转化载体相同。这些读数被组装成125个重叠群,检查了它们是否包含转基因插入或不使用五步程序。一个重叠群的序列表示T1190染色体4上已知的T-DNA插入。其余重叠群的序列在T1190和销钉中同样存在,它们具有与载体序列身份的部分同样存在于Apple参考基因组中,或者它们似乎是由内生污染而不是其他转基因插入的。因此,我们得出的结论是,转基因苹果植物T1190仅包含一个位于4号染色体上的转基因插入,并且没有进一步的部分插入转换载体。
基因组结构变体,包括缺失,重复,反演和遗传序列的易位,是遗传多样性的丰富资源。特别是,大西洋鲑鱼基因组显示出基因组结构变异的极端水平,这可能是由于它们最近的全基因组重复的独特历史所致。大西洋鲑鱼基因组中的结构变异是进化基因组学和水产养殖基因组学中最有希望的边界之一。然而,由于其复杂的性质,以及结构变体如何以功能优势驱动适应性进化,这尚待澄清。
多倍体在禾本科植物中很常见,对传统育种提出了挑战。基因组编辑技术绕过了杂交和自交,能够在一代中对多个基因拷贝进行有针对性的修改,同时保持许多多倍体基因组的杂合背景。巴哈草(Paspalum notatum Flügge ́;2 n =4 x =40)是一种无融合生殖的四倍体 C4 物种,在美国东南部广泛种植,作为肉牛生产和公用事业草坪的饲料。叶绿素生物合成基因镁螯合酶(MgCh)被选为在四倍体巴哈草中建立基因组编辑的快速读出目标。含有 sgRNA、Cas9 和 npt II 的载体通过基因枪法递送到愈伤组织培养物中。通过基于 PCR 的检测和 DNA 测序对编辑植物进行了表征,并观察到高达 99% 的 Illumina 读数的诱变频率。野生型 (WT) 巴哈草的测序显示,MgCh 的序列变异水平很高,这可能是因为存在至少两个拷贝,可能包含八种不同的等位基因,包括假基因。MgCh 突变体表现出明显的叶绿素消耗,叶片绿度降低了 82%。两种品系显示出随时间推移的编辑进展,这与体细胞编辑有关。获得了嵌合 MgCh 编辑事件的无融合生殖后代,并允许在一系列叶绿素消耗表型中识别出统一编辑的后代植物。高度编辑的突变体的 Sanger 测序显示 WT 等位基因的频率升高,可能是由于频繁的同源定向修复 (HDR)。据我们所知,这些实验是首次报道将基因组编辑应用于多年生暖季草皮或牧草。该技术将加速巴哈草品种的开发。