Michael A. Helmrath,医学博士Leyla Esfandiari,辛辛那提辛辛那提儿童医院医学中心辛辛那提大学干细胞和类器官医学系生物医学工程系3333 Burnet Avenue,MLC 2023 2023 2851 2851 michael.helmrath@cchmc.org leyla.esfandiari@uc.edu 513.636.4200 513.556.1355
摘要:类风湿关节炎(RA)是一种慢性炎症性关节疾病,其特征是形成增生的pannus以及软骨和骨骼损伤。RA的发病机理是复杂的,涉及发炎滑膜中各种细胞之间的广泛相互作用,包括成纤维细胞样的滑膜细胞(FLS),巨噬细胞和T细胞等。在炎症条件下,这些细胞被激活,进一步增强炎症反应,血管生成并促进骨骼和软骨降解。非常需要RA的新型治疗方法,并且已经认为间充质基质细胞(MSC)是一种有希望的新再生和免疫调节治疗。在本文中,我们介绍了MSC与RA-FLSS以及巨噬细胞和T细胞之间的相互作用,并总结了研究MSC在临床前和临床RA研究中使用的研究。
抽象的风湿病学家和风湿病学在单张教疼痛的概念化中起着重要作用,因为典型的Nociplastic疼痛条件是纤维肌痛。纤维肌痛以前被称为纤维炎,直到由于缺乏全身性炎症和组织损伤而显然可以与自身免疫性疾病区分开。单张教疼痛现在被认为是伤害性疼痛(由于周围损伤或炎症引起的疼痛)和神经性疼痛外,还被认为是疼痛的第三个描述剂/机制。单张教疼痛可以孤立地发生,也可以与其他疼痛机制合并,因为自身免疫性疾病的个体通常发生。我们现在知道,鼻骨疼痛的基本症状是普遍的疼痛(或者在没有炎症/损害迹象的区域疼痛),伴随着疲劳,睡眠和记忆问题。有客观的证据表明疼痛的扩增/增强以及非疼痛的刺激,例如灯光的亮度以及声音或气味的不愉快性。单张教疼痛状态可以由创伤,感染和慢性应激源等多种压力触发。这些特征共同表明,中枢神经系统(CNS)在引起和维持鼻骨疼痛方面发挥了重要作用,但是这些CNS因素可能是由持续的外周伤害感受器输入驱动的。最有效的致命药物疗法是非阿片类药物造成镇痛药,例如三轮车,5-羟色胺 - 氯肾上腺素再摄取抑制剂和gabapentinoids。但是,鼻骨疼痛治疗的支柱是使用多种非药理综合疗法,尤其是那些改善活动/运动,睡眠和解决心理学合并症的疗法。
间充质基质细胞(MSC)在数百种临床试验中探索了各种疾病的治疗及其愈合特性的巨大潜力。这些小径主要集中于免疫逻辑和神经系统疾病以及再生医学。脂肪组织是梅森辣椒基质细胞的丰富来源,也是获得和培养脂肪衍生的MSC(AD-MSC)的方法。AD-MSC活动的临床前测试的有希望的结果促使临床试验进一步导致AD-MSC批准用于治疗Crohn疾病和SubCU散布组织缺陷中复杂的骨瘘。但是,AD-MSC异质性以及各种制造方案或不同的策略以提高其活动,因此需要标准化的质量控制程序和预期细胞产品的安全评估。高分辨率转录方法最近引起了人们的关注,因为它们可以深入了解单个细胞的基因表达谱,有助于解构细胞层次结构和分化轨迹,并了解组织内的细胞细胞相互作用。本文介绍了评估AD-MSC治疗的安全性和功效的完整临床试验的全面概述,以及当前对人类AD-MSC的单细胞研究。此外,我们的工作强调了单细胞研究在阐明细胞作用机制并预测其thera thera peutic效应方面的重要性。
蘑菇栽培中最重要的方面之一是基质消毒。如果纤维素材料中的竞争性微生物没有被杀死,产量就会受到影响。通常使用蒸汽消毒来对蘑菇基质进行消毒。产生蒸汽需要大量的能量。能源来自天然气、柴油、电力或木柴。使用蒸汽会产生大量的运营成本,而且这个过程很耗时。需要开发一种更有效的臭氧灭菌技术来改善蘑菇基质灭菌。这种技术应该能够每天对大量基质进行灭菌,使种植者能够生产和销售更多的蘑菇,从而增加他们的收入。本文报道了一种新的基于臭氧的蘑菇基质灭菌技术,该技术在生产和时间方面更有效。这涉及将不同浓度的臭氧注入蘑菇基质,并进行分析以验证臭氧在蘑菇工业中的使用。分析了对整个基质体积进行灭菌所需的臭氧水平和处理时间。结果揭示了对整个蘑菇基质进行灭菌的最佳臭氧浓度和最佳时间。与传统的蒸汽灭菌技术相比,臭氧处理耗时更少。因此,从长远来看,它可以增加蘑菇基质的产量并降低成本。
摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
本研究的目的是探讨菌丝体作为一种新型增强材料和廉价生物基质在生物复合板生产中的可能性。在本研究中,菌丝体是从不同的基质、接种时间和加热时间处理中获得的。使用傅里叶变换红外 (FTIR) 光谱、热重分析 (TG/DTG)、差示扫描量热法 (DSC)、扫描电子显微镜 (SEM)、光学显微镜和抗弯强度测试测量了菌丝体生物基质的各种化学或物理特性。样品的结构分析表明,无论是接种纤维素基质还是淀粉基质,菌丝体中的几丁质含量都会增加,但随着接种时间的延长而增加。TGA 和 DSC 热分析图显示,热稳定性和玻璃化转变 (T g ) 温度随着接种时间的延长而提高。形态学观察证实了菌丝体网络的存在,可用作生物复合材料中的潜在生物基质。样品的机械性能在压制时间为 20 和 40 分钟时显示,菌丝体生物复合板的抗弯强度从 1.82 MPa 提高到 3.91 MPa。关键词:菌丝体;热;生物基质;生物复合材料版权所有 © 2020 PENERBIT AKADEMIA BARU - 保留所有权利
1材料科学,巴斯拉大学聚合物研究中心,伊拉克大学2Jabir Ibn Hayyan医科大学,Najaf,Najaf,伊拉克3Department of Medical Physicals,Hilla University College,Babylon,Babylon,伊拉克4Medical Laboratory Laboratory Secallator Seconal Setrocecy,伊斯兰教大学,伊斯兰教大学,伊斯兰教大学,伊斯兰教大学,伊利诺伊州,伊利诺伊州伊利诺伊州。5元素科技大学,DHI QAR,伊拉克6Computer工程技术系,伊拉克Al-Kitab大学工程技术学院。7机械工程系,昌迪加尔大学,昌迪加尔大学,旁遮普邦昌迪加尔大学,140413,印度8号机械工程机械,黎巴嫩美国大学机械工程,KRAYTEM 1102-2801,贝鲁特,贝鲁特,黎巴嫩,黎巴嫩9型机械工程,机械工程学,奥普尔大学,技术,45-75-75-75-75-75。kahtan444@gmail.com