1多功能磁光光谱技术中心(上海),纳米光学和高级工具工程研究中心(教育部),材料和电子科学学院材料系,东部中国师范大学,上海,200241年,200241年,200241年,200241 China 3 School of Computer Science and Technology, East China Normal University, Shanghai 200062, China 4 ASIC & System State Key Laboratory, School of Microelectronics, Fudan University, Shanghai 200433, China 5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China 6 Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433,中国
摘要:我们通过使用依赖偏振的超频率拉曼光谱的纯3R和2H堆叠顺序研究了MOS 2中的层间剪切和呼吸声子模式。我们在MOS 2中最多观察到三层剪切分支和四个呼吸分支,厚度为2至13层。呼吸模式显示出两种多型型的拉曼活性行为,但是2H呼吸频率始终比3R呼吸频率高几个波数,这表明2H MOS 2的层间层间层间lattice晶格偶尔略高于3R MOS 2。相比之下,剪切模式拉曼光谱在2H和3R MOS 2中截然不同。虽然最强的剪切模式对应于2H结构中的最高频率分支,但它对应于3R结构中的最低频率分支。3R和2H多型的如此独特和互补的拉曼光谱使我们能够从最高到最低分支中调查MOS 2中的广泛剪切模式。通过结合线性链模型,群体理论,有效的键极化模型和第一原理计算,我们可以考虑实验中的所有主要观察结果。
2 在 HMM-MAR MATLAB 工具箱和 glhmm Python 工具箱中,这由 'DirichletDiag'/'dirichlet_diag' 选项指定。3 𝐾= 6, 𝛿= 10 4 𝐾∈{3,6,9,12, 15},𝛿∈{10,100, 1000, 10000, 100000} 。有关详细信息,请参阅补充表 SI-3。
违反摩尔法律计算绩效的限制正在努力跟上不懈的驱动力,以实现高性能芯片,因为性能瓶颈已经出现了,扩展范围在所有方面都达到了极限。扩展摩尔定律的一种方法是通过异质整合,这可以随着性能水平的提高铺平到未来设备的道路。随着芯片的变小,越来越强大,连接不断增长的晶体管数量的电线变得越来越薄且包装更密集。产生的阻力增加和过热会导致信号延迟,并限制中央处理单元(CPU)时钟速度。其他问题包括大规模集成电路(LSI)操作中的频率限制,与电池相关的电源限制和冷却问题。在改善移动计算和图形处理系统中的性能时,一个考虑因素是确保工作频率和功耗均未增加。另一个考虑因素是,通过功耗效率改善内存访问带宽,因此必须具有广泛的输入/输出(I/O)内存总线而不是高频接口。此外,随着系统性能的改善,此类系统中的内存能力变得越来越重要。3D芯片技术有助于解决几个问题,这些问题挑战了芯片的性能提高和加工尺寸的减少。这种方法通过称为晶圆键的过程在另一个芯片或集成电路(IC)上层。TSV还可以实现更有效的散热并提高功率效率。与此使用透过的硅VIA(TSV)制造方法垂直堆叠多个芯片组件,从而产生更快,更小和更低的CPU。
随着芯片技术的发展,摩尔定律在微电子工业中的运用可能接近极限,三维集成电路(3D-IC)技术可以克服摩尔定律的限制,具有高集成度、高性能和低功耗的优势[1-3]。因此,3D IC中的芯片堆叠引起了电子工业的广泛关注,不同的键合技术被开发出来以保证芯片(或晶圆)的垂直堆叠,其中采用焊料的TLP键合已被提出作为实现低温键合和高温服务的有效方法。Talebanpour [4]采用Sn3.0Ag0.5Cu作为3D结构中的互连材料,经260 ℃回流温度和时效后获得了全IMC(Cu6Sn5/Cu3Sn)。储[5]研究了低温稳态瞬态液相(TLP)键合Cu/Sn/Cu和Ni/Sn/Ni焊点,分别检测到Cu 6 Sn 5 、Cu 3 Sn、Ni 3 Sn 4 、Ni 3 Sn 2 。陈[6]研究了基于TLP键合的Cu/Sn3.5Ag/Cu和Cu/Sn3.5Ag/Cu15Zn,焊点中检测到了Cu 6 Sn 5和Cu 6 (Sn, Zn) 5 ,研究发现Cu 6 Sn 5 由于其晶粒结构均一且脆性大,会降低键合可靠性;而Zn能有效地将均一晶粒结构修改为交错结构,从而提高键合可靠性。在3D IC结构中,完整IMC焊点在热循环载荷下的可靠性一直是重要的研究方向,有限元程序可以用来计算IMC焊点的应力-应变响应和疲劳寿命。田 [7] 研究了三维IMC接头的应力分析和结构优化
1美国加利福尼亚大学伯克利分校,美国加利福尼亚州94720,美国2 SLAC国家加速器实验室,美国加利福尼亚州斯坦福大学,美国3国际材料纳米结构中心,国家材料科学研究所,1-1 namiki,namiki,tsukuba,tsukuba,tsukuba 305-0044,日本305-0044,日本40.材料材料,国立材料,0044.日本5分子铸造,劳伦斯·伯克利国家实验室,伯克利,加利福尼亚州94720,美国6材料科学司,劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州94720,美国7化学科学司,劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州伯克利,加利福尼亚州94720,美国 *
图1:所选接口的干涉4D-STEM暗场成像。(a)4D-STEM方法的示意图,其中光束干扰用于提取堆叠顺序。(b)示意图说明了用于标记石墨烯三层的扭曲角,θ和层编号约定。(c)在扭曲的三层Moir'ES中实现的各种高对称堆叠配置的插图。(d,e)具有θ13≈0°(d)和θ13= 0的三角形的平均收敛束电子衍射图。22◦(e)。插图中突出显示了重叠的ttlg bragg磁盘。每个bragg磁盘归因于一层,在SI第6节中进行了主动。(f,h)虚拟暗场图像对应于1&3的重叠。(g,i)与所有三层重叠相对应的虚拟暗场图像。比例尺分别为1 nm -1和25 nm(d,e)和真实空间(F – i)。
Power Cable ARG Argentina 220V AC 10A 2-meter AC Power Cord JW113A AUS Australian AC Power Cord JW114A BR Brazil AC Power Cord JW115A CHN China AC Power Cord JW116A DEN Denmark 220V AC 10A 2-meter AC Power Cord JW117A IN India AC Power Cord JW119A IL Israel 250V AC 10A 2-meter AC Power Cord JW120A IT Italian AC电源线JW121A JP日本AC电源线JW122A KOREA AC电源线JW123A NA NA NA NA NA NA NA NA NA NA北美AC电源线JW124A EC大陆欧洲/Schuko AC电源线JW118A
1 S. Datta、S. Dutta、B. Grisafe、J. Smith、S. Srinivasa 和 H. Ye,IEEE Micro 39,8 (2019)。2 T. Bryllert、L.-E. Wernersson、T. Löwgren 和 L. Samuelson,Nanotechnology 17,S227 (2006)。3 D. Akinwande、N. Petrone 和 J. Hone,Nat Commun 5,5678 (2014)。4 R. Chen、H. Kim、PC McIntyre、DW Porter 和 SF Bent,Applied Physics Letters 86 (2005)。5 R. Chen、H. Kim、PC McIntyre 和 SF Bent,Applied Physics Letters 84,4017 (2004)。 6 S. Seo、BC Yeo、SS Han、CM Yoon、JY Yang、J. Yoon、C. Yoo、HJ Kim、YB Lee、SJ Lee、JM Myoung、HB Lee、WH Kim、IK Oh 和 H. Kim,ACS Appl Mater Interfaces 9,41607 (2017)。7 KJ Park、JM Doub、T. Gougousi 和 GN Parsons,Applied Physics Letters 86 (2005)。8 FS Minaye Hashemi、C. Prasittichai 和 SF Bent,ACS Nano 9,8710 (2015)。9 WH Kim、HBR Lee、K. Heo、YK Lee、TM Chung、CG Kim、S. Hong、J. Heo 和 H. Kim,Journal of the Electrochemical Society 158,D1 (2011)。 10 H. Kim,ECS Transactions 16, 219 (2008)。11 R. Wojtecki、J. Ma、I. Cordova、N. Arellano、K. Lionti、T. Magbitang、TG Pattison、X. Zhao、E. Delenia 和 N. Lanzillo,ACS applied materials & interface 13, 9081 (2021)。12 E. Färm、M. Kemell、M. Ritala 和 M. Leskelä,The Journal of Physical Chemistry C 112, 15791 (2008)。13 E. Färm、M. Kemell、E. Santala、M. Ritala 和 M. Leskelä,Journal of The Electrochemical Society 157 (2010)。 14 A. Sinha、DW Hess 和 CL Henderson,《真空科学与技术杂志 B:微电子学和纳米结构》24(2006 年)。15 V. Suresh、MS Huang、MP Srinivasan、C. Guan、HJ Fan 和 S. Krishnamoorthy,《物理化学杂志 C 116,23729》(2012 年)。16 A. Sinha、DW Hess 和 CL Henderson,《真空科学与技术杂志 B:微电子学和纳米结构》25(2007 年)。17 TG Pattison、AE Hess、N. Arellano、N. Lanzillo、S. Nguyen、H. Bui、C. Rettner、H. Truong、A. Friz 和 T. Topuria,《ACS nano 14,4276》(2020 年)。 18 M. Fang 和 JC Ho,ACS Nano 9,8651(2015)。19 AJ Mackus、AA Bol 和 WM Kessels,Nanoscale 6,10941(2014)。20 MJ Biercuk、DJ Monsma、CM Marcus、JS Becker 和 RG Gordon,Applied Physics Letters 83,2405(2003)。21 AT Mohabir、G. Tutuncuoglu、T. Weiss、EM Vogel 和 MA Filler,ACS nano(2019)。22 E. Bassous 和 A. Lamberti,Microelectronic Engineering 9,167(1989)。23 C. Ton-That、A. Shard、D. Teare 和 R. Bradley,Polymer 42,1121(2001)。 24 P. Louette、F. Bodino 和 J.-J. Pireaux,表面科学光谱 12,69 (2005)。25 A. Richard,法拉第讨论 98,219 (1994)。