实现这一目标将有助于确保任何政策变化都能够尽可能地“经济” 2 地惠及个人和社区。但是,经济必须以与促进可持续管理 3 一致的方式进行。否则,很有可能会将最初导致环境问题的经济思维用于评估旨在解决这些问题的政策。这种一致性可以通过更充分地认识效率的含义来实现,其中包括考虑“外部性”(即未考虑的对其他人的影响)。这样,塔拉纳基每个人生活和工作的“系统”就会比原本更加平衡(或者,用经济术语来说,“均衡”)。
x 本计划中详述的安排基于这样的假设:计划所依赖的资源在需要时可用。 x 本计划依赖于应急管理治理框架的有效实施。 x 本计划中详述的安排的有效性取决于所有相关机构准备、测试和维护适当的内部指令和/或常设操作程序。 x 本文件应与《州紧急状况及救援管理法》(SERM Act)https://www.legislation.nsw.gov.au/view/html/inforce/current/act-1989-165、新南威尔士州应急管理计划(NSW EMPLAN)https://www.emergency.nsw.gov.au/Documents/publications/20181207-NSW- state-emergency-management-plan.pdf、州级 EM 计划和政策以及悉尼大都会区 EMPLAN 一起阅读,其中进一步详细介绍了本计划中提到的当局和利益相关者的角色和职能。
塔拉纳基的主要活动计划主要由新普利茅斯区议会的主要活动基金资助,该基金使该地区能够吸引、开发和保留活动内容。该基金专门用于在新普利茅斯区内举办或主要在新普利茅斯区举办的活动,由 Venture Taranaki 管理。尽管该基金仍具有竞争力,但近年来实际金额有所减少,不过在此期间还必须注意到建立了单独的 NPDC 场地吸引基金,并对灯光节进行了额外投资。SDC 和 STDC 根据自己的目标资助在其边界内举办的活动内容。
什么是 Waratah 超级电池?WSB 也称为“电池储能系统 (BESS)”,位于悉尼以北约 100 公里处,原先是 Munmorah 发电站所在地。建成后,WSB 将拥有 850 MW 的容量和 1,680 MWh 的储能容量。Transgrid 并未建造 WSB。基础设施规划公司 EnergyCo 已任命 Akaysha Energy 建造、拥有和运营 WSB。欲了解更多信息,请访问:https://www.energyco.nsw.gov.au/projects/waratah-super-battery
ToF-SIMS 使用脉冲初级离子束(Bin+、Cs+、Ar+ 等)撞击样品表面并引发碎裂级联。结果是中性粒子、次级离子 (+/-) 和电子从样品的前几个单层中解吸。然后可以将次级离子加速到“飞行管”中,并通过测量它们到达探测器的确切时间来确定它们的质量
Vaibhav Kulshrestha 博士,CSIR-中央盐和海洋化学品研究所 (CSMCRI) 膜科学与分离技术部,古吉拉特邦巴夫那加尔
4。SC/ OBC状态索赔或任何其他福利的关键日期。费用特许权,预订,年龄 - 释放等(另外未指定)将是接收在线申请的截止日期。根据保留对OBC的预约的人必须确保他拥有种姓/社区证书,并且在关键日期不会落在奶油层。候选人还可以指出,就上述内容而言,他们的候选人资格将保持临时性,直到研究所的真实性得到验证为止。5。申请表中申请人填写的详细信息将在发布结果之前得到适当的验证。如果候选人未能为他们填写的细节提供真实的证明,则将立即没收他们的候选人资格。
氧化石墨烯(GO)的表面含有大量的羟基,羧基和环氧基团。这些功能组为共价和非共价方法提供了GO材料的修改方法。1,2 GO的表面模式已被广泛应用于生物成像的效果,3 - 7药物输送,8 - 10材料自我修复,11,12和催化。13“ gra gra from”方法是一种基于表面引起的gra groly聚合物的有吸引力的covaine cotien cation阳离子策略。此方法需要将启动位点锚定在底物的表面上,并在相应的催化剂的作用下实现聚生链的生长。“ gra”方法的优点包括较少的空间障碍和对聚合物链生长的限制。14
挥发性有机化合物(VOC)代表健康和环境危险化合物,但在其他领域中也起着至关重要的作用,包括早期疾病诊断和对饮食生产重要的健康状况的感知感。准确的VOC分析是必不可少的,需要创新的分析方法才能快速现场检测,而无需复杂的样品准备。表面增强的拉曼光谱(SER)是一个多功能的分析平台,非常适合检测化学物种。它依赖于光学探测金属纳米结构,这些金属纳米结构与与表面等离子偶联相关的紧密限制的电磁场,然后将拉曼散射的效率提高至单分子检测。尽管如此,SERS仍面临局限性,尤其是不与高贵金属结合的分析物。可以通过将传感器表面与金属有机框架(MOF)接口来规避此限制。以其化学和结构多功能性而闻名,MOF在其多孔结构中有效地预浓缩了低分子量物种。本评论介绍了基于MOF的SERS基材的最新发展,强调设计规则以最大化分析性能。在工业和环境监测的背景下讨论了检测有害VOC的状态的概述。此外,还包括对医学诊断和香气和风味分析中新兴应用的VOC分析调查。
摘要。三维(3D)成像对于理解复杂的生物学和生物医学系统至关重要,但是活细胞和组织成像应用仍然面临着由于成像速度的限制速度和强烈散射而面临的挑战。在这里,我们提出了一种独特的相调节刺激的拉曼散射断层扫描(PM-SRST)技术,以实现细胞和组织中的无标记的3D化学成像。为了完成PM-SRST,我们使用空间光调节器来电子方式操纵沿针头贝塞尔泵束的聚焦Stokes束进行SRS层析成像,而无需进行机械Z扫描。我们通过实时监测以8.5 Hz体积速率的水中的三键珠的3D布朗运动以及对MCF-7细胞中乙酸刺激剂的即时生化反应,证明了PM-SRST的快速3D成像能力。此外,将贝塞尔泵束与更长的波长stokes梁(NIR-II窗口)相结合,在PM-SRST中提供了出色的散射弹性能力,从而在更深的组织区域中可以快速断层扫描。与传统的点扫描相比,PM-SRST技术在高度散射介质(例如聚合物珠幻影和诸如猪皮肤和脑组织等生物学)的成像深度方面提供了〜双重增强。我们还通过观察氧化氘分子到植物根中的动态扩散和摄取过程来证明PM-SRST的快速3D成像能力。开发的快速PM-SRST可用于促进代谢活性的无标签3D化学成像以及活细胞和组织中药物输送和治疗剂的功能动态过程。