摘要 Carmela Elita Schillaci 是卡塔尼亚大学“创业与商业规划”(SECSP08)的教授。她在博科尼管理学院主修“战略分析与规划”,在纽约大学“创业研究中心”主修“创业精神”。他是卡塔尼亚大学商业经济学学位课程的主席;她曾任“商业、文化和社会”系主任(2000-2002 年)、经济学院院长(2002-2005 年)、MedSpin 大学孵化器首席执行官(2004-2007 年)、“MIUR 科技区 - 西西里微纳米系统”首席执行官(2009-2011 年)。她是埃特纳高科技联盟(拥有 37 家成员公司)的创始人兼总裁,也是 IBAN(意大利商业天使网络)董事会成员、沃达丰意大利基金会科学委员会成员、西西里风险慈善基金会主席以及米兰博科尼大学企业社会责任博览会科学委员会成员。他是意大利和外国科学委员会的成员。 2009年至今她一直担任经济发展部技术创新专家。自 2015 年至今,她一直担任第三次任务的 MIUR/ANVUR 专家,并且是 Anvur 学位课程认证和评估专家组的成员。主要涉及创新和高科技;战略管理;地域集群;创业;社会初创企业;公司治理;家族企业;区域营销,并在意大利和国外撰写了大量专著和论文。
CPSC 487/587 3D空间建模和计算。耶鲁大学。(课程我设计)计算机科学和相关领域的几个领域必须建模并计算对象如何随着时间的推移位于三维空间中,例如机器人技术,计算机视觉,计算机图形,计算机物理学,计算生物学,航空工程等。本课程将教学学生如何在对象之间的空间配置和空间关系随时间进行计算。所涵盖的主题将包括代表空间配置和转换的各种方法(例如变换矩阵,欧拉角,单位四季度,双重四基础等等。),空间变换的层次链,空间表示的衍生物相对于时间,计算空间对象之间的相交和渗透深度,在空间表示(例如使用花朵)上插值,信号处理,超过空间变换,优化空间代表,超过空间表示。
通知要求允许工程兵团和部落评估 RGP 项目,以确保拟议活动将导致排放得到必要的控制,以满足适用的水质要求。检查要求将确认遵循了最佳管理实践,并且排放符合水质参数。部落拥有评估和检查 RGP 项目对部落土地的影响的专业知识,并确保满足水质要求。
Koemmerling (Nanjing) Advanced Materials Co. Ltd. 6 Xinjinhu Road, Nanjing Hi-tech Zone, 210061, P.R.China 科梅林(南京)新材料有限公司,中国南京高新区新锦湖路6号,邮政编码: 210061 Tel 电话 +86 25 5869 4466 · Fax 传真 +86 25 5869 4488
摘要:由于薄膜内激发光和拉曼散射光的干扰,薄膜多层膜的拉曼信号强度随薄膜层厚度非单调变化。这一现象不仅可用于增强拉曼信号,还可用于研究薄膜厚度和光学特性。本文,我们对几种薄膜材料系统的拉曼信号厚度依赖性进行了实验研究,包括蓝宝石上硅 (SOS) 和 SOS 上的氮化硅薄膜,以及在硅基板上制备的多层 MoS 2。将适当缩放的测得强度与从传输矩阵法开发的分析模型进行比较。当激光光斑尺寸足够大于薄膜厚度时,SOS 薄膜具有很好的拟合效果。对于多层 MoS 2,发现来自底层 Si 基板的拉曼信号强度具有极好的拟合效果,而 MoS 2 特征拉曼位移的强度受激光参数和样品方向的影响。这些结果对薄膜计量和光学特性表征具有重要意义。
慕尼黑,80539 德国慕尼黑 * 通讯作者:r.oulton@imperial.ac.uk 分子振动对光的拉曼散射提供了一种通过分子内部键和对称性进行“指纹识别”的强大技术。由于拉曼散射很弱 1 ,因此非常需要增强、引导和利用它的方法,例如通过使用光学腔 2 、波导 3–6 和表面增强拉曼散射 (SERS) 7–9 。虽然 SERS 通过将光局限于金属纳米结构中极小的“热点”内而提供了显著的增强 6,15,22,2,但这些微小的相互作用体积仅对少数分子敏感,产生难以检测到的微弱信号 10 。在这里,我们展示了将 4-氨基硫酚 (4-ATP) 分子与等离子体间隙波导结合后的 SERS 引导至单一模式,效率 > 𝟗𝟗%。尽管牺牲了一个限制维度,但我们发现由于波导的更大传感体积和非共振模式,在宽光谱范围内 SERS 增强了 𝟏𝟎 𝟒。值得注意的是,波导-SERS (W-SERS) 足够明亮,可以对波导中的拉曼传输进行成像,从而揭示纳米聚焦 11–13 和珀塞尔效应 14 的作用。模拟激光物理学中的 𝛃 因子 15–17,观察到的接近 1 的拉曼 𝛃 因子为 SERS 技术带来了新的亮点,并指出了控制拉曼散射的替代途径。 W-SERS 引导拉曼散射的能力与基于集成光子学 7-9 的拉曼传感器有关,可应用于气体和生物传感以及医疗保健。拉曼光谱尽管效率低下,但由于利用了可见光波长下激光和探测器技术的成熟度,已成为一种强大的技术。已经开发出各种依赖于受激拉曼散射 1 或表面增强拉曼散射 (SERS) 18-20 的增强技术。受激拉曼过程是一系列强大方法的基础,但依赖于高强度和短脉冲光激发,这通常会损坏样品。同时,SERS 21 已成为一个庞大的研究领域,探索能够将拉曼增强许多数量级的金属纳米结构,例如粗糙的金属表面 22、纳米颗粒 10,23,24、纳米间隙 25,26、波导 9,27 和金属尖端 18,28,29。尽管对单个分子敏感,SERS 仍有几个局限性。首先,最强的 SERS 需要非常小的“热点”,其中增强是活跃的,但只有少数分子可能会经历它。其次,共振增强限制了拉曼带宽。最后,从局部场中出现的 SERS 会发生衍射,使有效检测变得困难 10 。在本信中,我们使用等离子体波导探索波导增强拉曼散射 3–6 ,结合 SERS 7–9 ,如图 1a 所示。它由一个等离子体间隙波导和放置在玻璃基板两端30-32的光学天线耦合器组成。间隙区域的拉曼散射通过两种机制增强:纳米聚焦效应11-13引起的局部激发强度增加,以及真空涨落增强引起的珀塞尔效应14。图1b中波导模式的有限差分时域(FDTD)模拟显示了光学限制强度。虽然波导在许多倍频程上提供非共振SERS,但这种增强在天线-波导耦合的有效带宽内持续存在。虽然这种方法牺牲了沿一个方向的限制,但强波导-SERS(W-SERS)能够对纳米结构上的拉曼传输进行成像,并观察纳米聚焦和珀塞尔效应。我们发现间隙模式中的SERS占主导地位,因为它驱动珀塞尔效应。因此,我们引入了自发拉曼β因子15–17,以量化SERS与该单一模式耦合的比例。我们发现W-SERS在宽光谱范围内产生接近1的拉曼β因子,增强了10 4。
在一个相关的例子中,拉曼成像用于比较两种黄油产物,以研究其不同扩展能力的基础化学差异。通过沿z轴相结合在连续的焦平面上获得的2D图像来产生正常黄油和更可扩展产物的单个3D拉曼图像(图5a,b)。这两种产品显然是预期的油脂层。在可撒黄油中的水含量高,水的水与更坚固的脂肪相比,水含量更大。化学物质在脂肪阶段中的分化通过比较其拉曼光谱而变成证明(图5C)。 每种产品都包含不同类型的脂肪和油。 脂肪的同意受不饱和脂肪酸的量以及其他参数的影响。 可以通过1655 cm -1 的C = C拉伸模式的比率比较脂肪的不饱和度5C)。每种产品都包含不同类型的脂肪和油。脂肪的同意受不饱和脂肪酸的量以及其他参数的影响。可以通过1655 cm -1
3 KECLC_D计算企业云计算中的理学学士学位(具有安全性和云认证)3年级服务器端网络开发(网络设计开发)2025年1月9日,星期四12:30 12:30-14:30体育厅 - 塔拉格特校园