在宽带隙器件获得商业认可之前,必须证明其可靠性,而且对可靠性的要求也更高。在器件和封装层面不断追求更高的功率密度,会导致整个封装的温度升高和温度梯度增大。新的应用领域通常意味着更恶劣的环境条件。例如,在汽车混合动力牵引系统中,内燃机的冷却液温度可能高达 120°C。为了提供足够的裕度,这意味着最高结温 (T JMAX ) 必须从 150°C 提高到 175°C [4]。在飞机等安全关键应用中,已经提出了零缺陷概念来满足更严格的可靠性要求。
肺容积升高表明肺气肿过度。空气滞留由观察到的 RV/TLC 比率与预测的 RV/TLC 比率之间的差异增大表示。气道阻力的改善表明气道具有一定的可逆性。气道阻塞与患者的吸烟史相符。气道阻塞是患者呼吸困难的原因。虽然支气管扩张剂在这例病例中没有用,但长期使用可能对患者有益。扩散能力降低表明混合型支气管炎和肺气肿气道阻塞。低扩散能力表明肺泡毛细血管表面损失。混合型阻塞性气道疾病
病例报告 一名 3 个月大的男婴被转诊到我们的门诊部进行免疫接种。该患者被诊断为 MPS 2 型 (MPS-T2)。病史报告称,该婴儿出生于一名 32 岁的母亲,妊娠 34 周,通过自然阴道分娩出生。他的一分钟和五分钟阿普伽评分分别为 5 分和 7 分。体格检查发现,孩子身材矮小,头骨增大,鼻梁低,面部粗厚,手短脚小。出院前,接种了第一剂乙肝疫苗。之后没有报告任何不良事件。建议父母进行常规体检,以评估孩子的生长发育情况,并按照提供的时间表继续免疫接种。
摘要。针对具有随机参数的同步带传动谐振可靠性问题,将同步带传动建模为轴向运动的连续体。基于Galerkin法,分析了同步带横向振动时的频率响应。考虑到参数的随机性,由摄动理论推导出频率响应与随机参数的关系。在结构共振疲劳的基础上,利用固有频率与激励频率之间的准则,得到了同步带传动谐振可靠性的性能函数,研究了同步带传动的前二阶谐振失效概率。结果表明,随着带速的增加,同步带传动横向振动的固有频率降低。一次谐振失效概率降低,二次谐振失效概率增大。研究结果为带传动的抗共振设计和可靠性评估提供了参考。
电阻是衡量电流流过材料时遇到的阻力大小的一种量度。在某些材料中,这种阻力还取决于施加在材料上的磁化强度和方向。这种现象称为各向异性磁阻 (AMR)。1856 年,苏格兰物理学家开尔文勋爵通过对铁和镍等铁磁金属进行实验首次观察到了这种现象[1]。他发现,当磁力方向垂直于电流时,电阻减小,而当磁力方向一致时,电阻增大。AMR 的应用可以在自旋电子学中找到,这是一项固态技术,其中电子自旋可以被操纵以产生有用的特性。自旋电子学用于各种技术,例如车辆中的导航系统和用于数据存储的硬盘[2]。
引言脊椎动物大脑的极为保守的特征之一是心室系统,它是一个充满脑脊液的连接室网络[1]。自亚里士多德时代以来,脑室就已经知道了[2]。大脑总体积的大约2%由心室组成[3]。临床医生,神经外科医生和放射科医生可以从了解日常的科学工作中了解大脑心室系统的正常和异常结构中受益[4]。对儿童中脑积水的关键检查涉及可视化脑室。脑积水的诊断和分类一直依赖于心室系统的形态测量值,以及在诸如心室分流等干预过程中对心室系统扩张的评估和监测[5,6]。由于衰老和各种痴呆症,脑组织与心室增大以及大脑中其他物理和组织学变化有关[7]。
量子速度极限 (QSL) 定量估计了量子信息处理的速度 [1]。其历史根源深深植根于量子力学的基础中。因此,QSL 的首次出现是在能量-时间不确定关系的背景下 [2]。QSL 时间设定了两个量子态之间演化时间的下限。受海森堡能量-时间不确定原理的启发,Mandelstam、Tamm (MT) [2] 和 Margolus、Levitin (ML) [3] 推导出量子系统在状态之间演化所需的最短时间界限。这些界限结合起来,为封闭量子系统提供了 QSL 时间的严格界限。它们最初是为连接两个正交态的演化而开发的,随后被推广到任意初始混合态以及非正交态之间的演化 [4]。最近开发了另一种基于状态间几何距离的方法 [5]。近十年来,在开放量子系统 [ 6 ] 的背景下,QSL 的定义得到了发展 [ 7 – 9 ]。QSL 的概念已用于阐明量子信息 [ 10 , 11 ]、开放系统 [ 12 – 15 ]、量子系统控制 [ 16 ] 和量子热力学 [ 17 , 18 ] 的各个方面。此外,利用因果关系和热力学,重要的 Bremermann-Bekenstein 边界 [ 19 , 20 ] 将每比特信息的能量成本与 QSL 时间联系起来。QSL 概念可用于解决的另一个基本问题是量子态的固有稳定性 [ 21 ]。近年来,量子信息思想与相对论量子力学的相互影响尤为卓有成效。相对论量子模拟影响了 Leggett–Garg 不等式 [ 22 , 23 ]、弯曲时空探测 [ 24 ]、几何相位 [ 25 ] 和中微子和中性介子等亚原子粒子相干性 [ 26 ] 的发展。它还引发了对 Unruh 效应的研究 [ 27 ]。此外,在最近的一项研究中 [ 28 ],研究了非局域性对信息传播速率(以蝴蝶速度为特征)的影响,结果表明,随着磁场的增大,非局域性会增大。
串扰现象是由于 2 条线路之间的耦合造成的。耦合系数(β 12 或 β 21 )随着线间距减小而增大,尤其是在硅片中。在上面的例子中,负载 R L2 上的预期信号为 α 2 V G2 ,实际上此时的实际电压有一个额外的值 β 21 V G1 。V G1 信号的这一部分表示线路 1 的串扰现象对线路 2 的影响。当驱动器在干扰线路中施加快速数字数据或高频模拟信号时,必须考虑这种现象。如果受扰线路采用低压信号或高负载阻抗(几 k Ω ),则受扰线路将受到更大的影响。
本研究提出了一种在扩展现实 (XR) 环境中同时进行用户身份验证和脑机接口 (BCI) 文盲检测的协议。通过使用包含目标刺激图像的周期性视觉刺激来诱导选择性参与者注意力。事件相关电位 (ERP) 用于用户身份验证,而稳态诱发电位 (SSVEP) 用于识别 BCI 文盲。实验结果表明,10 Hz 增大/缩小字母图像刺激最有效,在用户分类中达到 99% 的准确率。因此,所提出的协议可用于在 XR 环境中建立用户身份验证和 BCI 文盲检测系统。这些发现有望成为 XR 环境中通用神经接口开发的重要基础。