风力涡轮机叶片的报废处理方式多种多样,从商业上可用的填埋到新兴的结构二次利用。这些报废处理方式回收叶片所含增强纤维、树脂和填充材料的全部价值的能力各不相同。商业技术(如水泥窑进料)和近乎商业化的技术(如气化)通过回收树脂和填充物作为能源的价值以及将纤维作为低质量增强材料或矿物的价值来妥协。新兴技术(如热塑性树脂)有望回收高质量的树脂和纤维。
获得了2024年4月4日的细菌纤维素(BC),由于其独特的结构属性和显着的物理机械特性引起了极大的关注,使其在生物医学应用中非常流行,例如人造皮肤,血管,血管,组织支架和伤口敷料。但是,其在各种领域的广泛应用通常受到机械性能和功能特性差的限制。通过合并合成材料的基于BC的复合材料的发展已广泛研究以解决这些局限性。本评论论文总结了卑诗省合成材料的制造策略,其开发方法和前地图方法,并突出了它们在不同领域的广泛应用。已经设计了各种策略,用于合成BC复合功能化材料,该材料是根据其预期应用的特定性质量身定制的。在BC复合材料的合成中,原位将增强材料添加到合成培养基中,或者主要涉及这些材料中的这些材料中的微丝。各种材料已被用作增强材料,从有机聚合物到无机纳米颗粒。这些复合材料有可能用于组织再生,伤口愈合,固定酶和医疗设备的发展。近年来已经看到了包含导电材料的BC复合材料的发展,这些材料用于生产各种电气产品,例如生物催化剂,酶,电子纸纸,显示器,显示器,电气仪器和光电设备。总而言之,BC复合材料及其应用的合成为生产具有增强性能和不同功能的先进生物材料提供了途径,从而探索了它们作为跨多个部门适用的环保和多功能材料的潜力。关键词:细菌纤维素,可持续性,生物材料,BC-Composites,功能化简介
1 物理系 – 教育学院(Ibn Al-Haitham) – 巴格达大学。伊拉克 2 物理系,科学学院,Al-Mustansiryah 大学,巴格达,伊拉克 Ahmad27@gemail .com,电子邮件:aseelalaziz@uomustansiriyah.edu.iq 摘要。本研究研究了伽马射线屏蔽的一些衰减参数。该屏蔽由不饱和聚酯作为基材,纳米氧化铁(Fe 2 O 3 )和微米铁(Fe)作为增强材料,以不同的百分比(1、3、5、7 和 9)wt%,具有不同的厚度(1、1.5、2、2.5、3、3.5 和 4)cm。结果表明,在辐射屏蔽领域,纳米粒子的使用效果优于微粒。已经证明,在使用纳米粒子的情况下,伽马的衰减参数值比使用微米材料的情况要差。
飞机制造中不可或缺的组成部分是对结构元件和材料进行耐久性现场试验和实验室试验(Starke、Staley 1996;Ostash 等 2006)。用于生产飞机机身的结构材料应具有抗塑性和抗老化性(Merati 2005)。同样,火箭和飞机结构以及化学、石化和运输结构的耐久性(考虑到材料的塑性和强度)也是必不可少的,这些结构在不同物理性质的严重影响下运行,包括局部载荷和接触相互作用(Merati 2005;Smith 等 2000;Lo 等 2009)。因此,开发用于增强材料机械性能的新方法非常重要。其中之一是改性
抽象的聚合物纳米复合材料已被广泛用作吸附剂,以在最终的仪器分析之前从环境水中提取污染物。这些材料具有高度的用途,可以通过充分选择聚合物/纳米材料组合来适应给定的分析问题。通过在实验室和可以获得它们的不同格式(颗粒,膜,整体或纤维)中的不同格式(颗粒,膜,整体或纤维)来增强材料的适应性。本文提供了一般概述聚合物纳米复合材料的潜力,强调了实际方面(合成和微挖掘技术)。它旨在通过在样本制备中显示这些材料几乎无尽的可能性以及在不久的将来的主要趋势来激发研究人员。
简介。- 断裂的对称性通常会增强材料的功能。一个示例在半导体中损坏了代替对称性,从而导致了常规二极管效应[1]。最近已经意识到,在时间反转和反转对称性损坏的超导体中也可能发生二极管效应。在这种超导二极管效应(SDE)中,耗散的电流少于一个方向,而只有正常电流才能沿反向方向流动[1,2]。由于其构建节能电子功能的潜力,SDE在整体超导体[3-19]和Josephson的设置[20-30]中都受到了极大的关注,并且在许多实验性发现[31 - 39]中[31-39],并获得了60%的Diode diode效率[31 - 39]。
我们回顾了用于材料发现的机器学习(ML)工具以及不同ML策略的复杂应用。尽管已经发表了一些关于材料人工智能(AI)的评论,重点是单一材料系统或个别方法,但本文重点关注AI增强材料发现的应用视角。它展示了如何在材料发现阶段(包括特性、属性预测、合成和理论范式发现)应用AI策略。此外,通过参考ML教程,读者可以更好地理解ML方法在每个应用中的确切功能以及这些方法如何实现目标。我们的目标是使AI方法更好地融入材料发现过程。本文还强调了AI在材料发现中成功应用的关键和需要解决的挑战。
添加过渡元素(如 Cu、Fe 和 Ni)的铸造近共晶 Al-Si 合金是航空航天和汽车工业中常用的材料。[1,2] 此类合金的微观结构特点是共晶和初生 Si 以及嵌入 Al 基体中的多种富 Ni、Fe 和 Cu 铝化物形成的 3D 互连网络。[3 – 7] 在高温下(最高达约 300 – 350 ℃)长时间使用后,铝基体会过时,从而降低其强度和蠕变性能。为了提高这些 Al-Si 合金的强度和抗蠕变性能,可以使用额外的陶瓷增强材料,如短纤维和颗粒。[8 – 10] 研究表明,此类复合材料的微观机械行为在很大程度上取决于纤维的取向、颗粒的空间分布、
生物塑料为食品包装中合成塑料的有希望的替代品,由于其生物降解性和无毒性。但是,它们的机械性能和水灵敏度有限,阻碍了广泛采用。在这项研究中,使用溶液铸造方法制备了基于淀粉的复合生物塑料膜,该方法结合了碱性处理的柠檬草纤维(2-10 wt%)和柠檬草精油(1-3%)作为增强材料。纤维表征揭示了由于碱性处理的结果,结构性,热和形态改善。增强的生物塑料膜表现出增强的机械性能,最高为2.5MPa,这归因于与淀粉基质的改进的纤维整合。此外,将柠檬草精油掺入显着提高了屏障特性,将水吸收降低至30%,并将水的渗透性降至6.7615x10 -11 g/s.m.m.pa。这些发现证明了用LF和LEO对食品包装应用增强的淀粉生物塑料的适用性。