摘要 Prime editor 在疾病建模和再生医学方面具有巨大潜力,包括针对肌肉萎缩症杜氏肌营养不良症 (DMD) 的研究。然而,Prime 编辑系统的庞大规模和多组分性质带来了巨大的生产和交付问题。本文,我们报告将优化的全长 Prime 编辑构建体包装在腺病毒载体颗粒 (AdVP) 中,可以在人类成肌细胞(即成肌细胞和间充质干细胞)中安装精确的 DMD 编辑(分别高达 80% 和 64%)。AdVP 转导确定了优化的 Prime 编辑试剂,这些试剂能够恢复约 14% 患者基因型的 DMD 阅读框架,并恢复未选择的 DMD 肌细胞群中的肌营养不良蛋白合成和肌营养不良蛋白-β-肌营养不良聚糖连接。 AdVP 同样适用于纠正 DMD iPSC 衍生的心肌细胞,并通过靶向外显子 51 缺失提供针对 DMD 修复的双引物编辑器。此外,通过利用不依赖细胞周期的 AdVP 转导过程,我们报告 2 组分和 3 组分引物编辑模式在细胞周期中最活跃,而不是在有丝分裂后细胞中。最后,我们确定将 AdVP 转导与无缝引物编辑相结合可以通过连续的递送轮次堆叠染色体编辑。总之,AdVP 允许对高级引物编辑系统进行多种研究,而不管其大小和组分数量如何,这应该有助于它们的筛选和应用。引言由序列定制的向导 RNA (gRNA) 和 Cas9 内切酶组成的可编程核酸酶是基因组编辑的有力工具。然而,双链 DNA 断裂 (DSB) 的普遍修复是通过容易出错的末端连接过程进行的,这赋予了基于核酸酶的基因组编辑内在的高诱变特性。相比之下,prime 编辑允许在特定基因组序列上安装任何单个碱基对变化和精确的小插入或删除 (indel),而不会形成 DSB (1)。通常,prime 编辑复合物包含与切口 Cas9 变体 (prime editor) 融合的工程逆转录酶 (RT) 和 3' 端延伸的 gRNA,称为 prime 编辑向导 RNA (pegRNA)。pegRNA 分别通过其间隔物和 RT 模板部分指示靶位点选择和感兴趣的编辑。在靶位点切口后,释放的单链 DNA 与 pegRNA 的引物结合位点 (PBS) 退火,引发 RT 介导的 RNA 模板复制为互补 DNA,在基因组位点杂交、瓣切除和 DNA 修复或复制后,导致靶向染色体编辑 (1)。prime 编辑有两种主要模式,即 PE2 和 PE3 (1)。前者的 2 组分系统仅依赖于一个引物编辑蛋白(例如 PE2)和一个 pegRNA,而后者的 3 组分系统则需要一个补充的常规 gRNA。在 PE3 中,gRNA 引导的未编辑 DNA 链切口促使其被编辑链取代,这通常会导致同源双链 DNA 编辑频率更高,尽管同时增加了插入/缺失副产物 (1)。最近,基于将 prime editor 与双 pegRNA 一起递送的多重 prime 编辑正在进一步扩大 DSB 独立的基因组编辑程序的范围。事实上,在这种情况下,一对 prime 编辑复合物协同作用以安装基因组插入、删除和/或替换,其大小远远大于通过 PE2 和 PE3 策略实现的插入、删除和/或替换 (2-7)。由于其巨大的潜力和多功能性,prime 编辑系统正在快速发展,包括改进的 prime 编辑蛋白和 pegRNA,例如 PEmax (8) 和工程 pegRNA (epegRNA) 架构 (9,10)。PEmax 构建体在其 Cas9 切口酶和 RT 部分分别整合了特定突变和密码子优化,有助于增强 prime 编辑活性 (8)。 epegRNA 具有以结构化 RNA 假结形式延伸的 3' 端(例如 tevopreQ1),可保护它们免受核酸外切降解(9,10)。尽管取得了这些重要进展,但 Prime 编辑组件的庞大尺寸造成了严重的生产和交付瓶颈,阻碍了它们最有效的测试和应用。旨在改善交付瓶颈的方法包括将 Prime 编辑器构建体拆分为亚基,这些亚基在进入细胞后原位组装束缚或未束缚的 Cas9 切口酶和 RT 部分(11-20)。此外,其他辅助方法允许通过以下方式富集 Prime 编辑的细胞级分; (i) 使用替代报告基因或药物系统分离在靶基因和可选择标记基因上共同编辑的细胞 (21-23),或 (ii) 通过共同递送细胞 DNA 错配修复途径的显性负因子来干扰编辑的 DNA 链去除 (8,10)。尽管适用于特定环境,但这些主要编辑系统的多组分特性使其设计复杂,并且其更广泛的应用具有挑战性。PEmax 构建体分别在其 Cas9 切口酶和 RT 部分中整合了特定突变和密码子优化,这有助于增强 prime editing 活性 (8)。epegRNA 具有以结构化 RNA 假结 (例如 tevopreQ1) 形式延伸的 3' 端,可保护它们免受核酸外切降解 (9,10)。尽管取得了这些重要进展,但是 prime editing 组件的尺寸较大,造成了严重的生产和交付瓶颈,阻碍了其最有效的测试和应用。旨在改善交付瓶颈的方法包括将 prime editor 构建体拆分为亚基,当进入细胞时,亚基就地组装束缚或不受束缚的 Cas9 切口酶和 RT 部分 (11-20)。此外,其他辅助方法允许通过以下方式富集 prime 编辑的细胞级分; (i) 使用替代报告基因或药物系统分离在靶基因和可选择标记基因上共同编辑的细胞 (21-23),或 (ii) 通过共同递送细胞 DNA 错配修复途径的显性负因子来干扰编辑的 DNA 链去除 (8,10)。尽管适用于特定环境,但这些主要编辑系统的多组分特性使其设计复杂,并且其更广泛的应用具有挑战性。PEmax 构建体分别在其 Cas9 切口酶和 RT 部分中整合了特定突变和密码子优化,这有助于增强 prime editing 活性 (8)。epegRNA 具有以结构化 RNA 假结 (例如 tevopreQ1) 形式延伸的 3' 端,可保护它们免受核酸外切降解 (9,10)。尽管取得了这些重要进展,但是 prime editing 组件的尺寸较大,造成了严重的生产和交付瓶颈,阻碍了其最有效的测试和应用。旨在改善交付瓶颈的方法包括将 prime editor 构建体拆分为亚基,当进入细胞时,亚基就地组装束缚或不受束缚的 Cas9 切口酶和 RT 部分 (11-20)。此外,其他辅助方法允许通过以下方式富集 prime 编辑的细胞级分; (i) 使用替代报告基因或药物系统分离在靶基因和可选择标记基因上共同编辑的细胞 (21-23),或 (ii) 通过共同递送细胞 DNA 错配修复途径的显性负因子来干扰编辑的 DNA 链去除 (8,10)。尽管适用于特定环境,但这些主要编辑系统的多组分特性使其设计复杂,并且其更广泛的应用具有挑战性。
大肠杆菌DNA污染单元测试了N/A N/A 100 100 100规格> 99%13,333 U/mg功能性功能性NO conversion <10份蛋白质来源:重组大肠杆菌菌株,携带毒液T7基因5和E. coli trxa基因。单位定义:1个单位定义为将10 nmol的总DNTPS转换为酸不溶性材料所需的聚合酶量,在37°C下30分钟内。分子量:92.1 KDA质量控制分析:使用2倍连续稀释方法测量单位活动。稀释酶,并将其添加到含有小腿胸腺DNA,1x T7 DNA聚合酶单位表征缓冲液(20 mM Tris-HCl,100 mm KCl,6 mM MGCL,6 mM MGCL 2,6mmmmmgcl 2,0.1 mm EDTA,5 mmβ-MMβ-MERCAPTOETOETHANANOL),3 H-DTT的反应中,3 H-DTT,在37°C下孵育10分钟,浸入冰上,并使用Sambrook和Russell的方法进行分析(6)。蛋白浓度(OD 280)由OD 280吸光度确定。物理纯度,然后进行银色染色检测。通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。双链核酸内切酶在50 µL反应中确定,该反应含有0.5 µg质粒DNA和10 µL的酶溶液在37°C下孵育4小时。大肠杆菌16S rDNA的污染是使用5 µL r菌酸溶液的样品变性的样品,并在Taqman QPCR分析中筛选,以使用与16S rRNA locus相应的寡核苷酸引物,使用污染的大肠杆菌Genomic DNA。
大肠杆菌DNA污染单位测试了N/A N/A 200 200 200 200 200个规范> 99%27,400 U/mg <5.0%释放<1.0%<1.0%释放no conversion <10拷贝蛋白质的来源:大肠杆菌菌株,一种带有来自calf thymus的calf thymus的大肠杆菌菌株,该菌株具有N-Calf thymus,该基因具有N-Calf Thymus,该基因具有N-末端式纤维质质质质质量。单位定义:1个单位定义为在37°C下1小时内将1 nmol DTTPS转换为酸不溶性材料所需的聚合酶量。分子量:82.6 KDA质量控制分析:使用2倍连续稀释方法测量单位活动。在1X反应缓冲液中制成酶的稀释液,并将其添加到50 µL含有寡做DT 20 MER DNA,1X反应缓冲液,0.25 mM COCL 2 3 H-DTTP和100 µM DTTP的反应中。在37°C下孵育10分钟,浸入冰上,并使用Sambrook和Russell的方法进行分析(3)。蛋白浓度(OD 280)由OD 280吸光度确定。物理纯度,然后进行银色染色检测。通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。双链核酸内切酶在50 µL反应中确定,该反应含有0.5 µg质粒DNA和10 µL的酶溶液在37°C下孵育4小时。大肠杆菌16S rDNA的污染是使用5 µL重复的酶溶液的重复样品,并在Taqman QPCR测定中筛选,以使用与16S RRNA locus相应的寡核苷酸引物,以存在污染的大肠杆菌基因组DNA。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年2月22日发布。 https://doi.org/10.1101/2024.02.20.581294 doi:Biorxiv Preprint