该出版物是作为“循环城市实验室 - 城市可重复使用的包装系统”项目开发的,该项目旨在通过促进经济上可行的可重复使用的系统并加强妇女和女性Entre Preneurs在当地循环经济体中的参与来减少温室气体(GHG)排放。与当地利益相关者合作,该项目将在四个不同的城市建立循环城市实验室。在这些实验室,企业,城市政府,学术界和民间社会中,共同参与了功能性和包容性的循环经济,并探索可重复使用的包装和相关业务模型的潜力。该项目是由德国Gesellschaftfürinternationale Zusammenarbeit(GIZ)与ICELEI合作,并代表德国联邦经济合作与发展部(BMZ)进行的。
这些标准是与医疗保健市场转型网络 (HMTN) 的医用纺织品工作组合作起草的,旨在提供可持续性标准和指南,解决与欧洲医疗保健领域可重复使用纺织品相关的优先可持续性问题。 1 采购商可以根据自己的政策和可持续性目标自由调整这些标准。 除了广泛而均衡的可持续性标准外,我们还鼓励医疗保健采购商在产品选择中采用最佳价格质量比 (BPQR)。 2 这使得投标能够根据包括与合同目标相关的环境和社会标准的授予标准进行评估。 还必须包括价格或成本标准。 欧盟经济运营商 3 必须遵守欧盟采购医疗器械的相关法规,即《公共采购指令》 - PPD、《化学品 REACH》和《医疗器械法规》 - MDR。 本文件整合了现行立法下的要求。未完全遵守欧盟要求的非欧盟经济运营商应将本文件视为起点,该文件列出了所需的最低标准,代表了在社会、环境和化学要求范围内更全面的生产方式。这些标准的制定将与市场发展和最佳实践保持同步。我们将根据反馈、市场或监管变化以及新创新更新本文件。请将反馈发送至 europe@hcwh.org。
图 1 hiPSC-NSC 的生成和核型分析。A、在 Matrigel 上生长的 R-iPSC4-hiPSC 菌落。B、用胶原酶 IV 消化 hiPSC 后形成的胚状体 (EB)。C、用 TGF β 抑制剂 SB421543 和 BMP 抑制剂 dorsomorphin 处理的 EB 接种到聚-l-鸟氨酸和层粘连蛋白包被的板上后 7-10 天出现玫瑰花结状结构。D、通过解离玫瑰花结状结构并接种到聚-l-鸟氨酸和层粘连蛋白包被的板上获得神经外胚层细胞。E、F、这些细胞表达 NSC 标记物 Nestin (E) 并在分化第 30 天分化为表达微管相关蛋白 2 (MAP2) 的神经元 (F)。细胞核用 Hoechst 33342 (蓝色) 染色。比例尺:100 µ m。G、H、基于全基因组 SNP 阵列的 hiPSC-NSC 核型分析。针对位于该区域的阵列上所有 SNP,绘制了每条染色体的 B 等位基因频率(上图)和 log 2 R 比率(下图)。每个点都是一个 SNP。虽然第 10 代(p10)的细胞没有显示任何主要核型异常(G),但 p16 的 hiPSC-NSC 表现出 1 号染色体整个长臂的重复,dup(1)q(H)
摘要 最常见的神经退行性疾病,如阿尔茨海默病或帕金森病,其特征是突触功能障碍、神经元丢失和中枢神经系统中的蛋白质聚集。错误折叠蛋白质的沉积构成了这些疾病的神经病理学特征,这些疾病被归类为蛋白质病。除此之外,其他神经退行性疾病的特征是遗传异常,例如遍布整个人类基因组的不稳定重复简单序列束(微卫星)。它们被称为重复扩增障碍,包括与 C9ORF7 2 扩增相关的亨廷顿氏病或额颞叶痴呆/肌萎缩侧索硬化症表型。扩增的 DNA 束的存在会导致 DNA、RNA 和蛋白质水平的分子改变,这些改变与不同的机制有关,例如功能丧失(LOF)、功能获得(GOF),包括生理或突变蛋白质的错误折叠,有利于它们的聚合和聚集。因此,特定的蛋白质病也由这些重复扩增障碍引起。首先将描述扩增束的性质和位置的分子描述,强调其对临床表型的影响。然后将特别关注与蛋白质病相关的重复扩增的三种病理机制。最后,我们将展示对这些不同机制的理解进展如何导致新/创新治疗方法的最新进展和相关生物标志物的出现。
1 Instituto Agronômico (IAC), Centro de Grão e Fibra, Campinas, SP, Brasil 2 Embrapa Trigo, Passo Fundo, RS, Brasil 3 Syngenta Proteção de Cultivos LTDA, São Paulo, SP, Brasil 4 Embrapa Soja, Londrina, PR, Brasil Corresponding author: V. Carpentieri-Pipolo电子邮件:valeria.carpentieri-pipolo@embrapa.br genet。mol。res。22(3):GMR19145于2023年3月8日收到2023年6月29日,于2023年8月24日发表doi http://dx.doi.org/10.4238/gmr19145摘要。kunitz胰蛋白酶抑制剂(KTI)影响蛋白质的消化率和脂氧合酶同工酶(负责与大豆基食品相关的异味)是大豆种子中存在的两个不良因素。这些不愉快的因素通常被热处理灭活。但是,热处理并不能完全消除这些因素。此外,它可能会降低蛋白质溶解度,并可能产生额外的能源成本。遗传消除这些因素可能是热处理的替代方法。这项研究旨在选择种子中没有KTI和Lipoxygoganase同工酶的大豆线。通过越过BRS 213品种,该品种显示出低脂氧合酶活性,而BRS 155(KTI缺乏品种),获得了研究中的种群。f 2:3杂种种群被选择并使用DNA标记来分析,以鉴定编码KTI和三种脂氧合酶(LOX1,LOX2和LOX3)的隐性等位基因。f 2:3隔离人群通过KTI特异性标记成功识别,效率为100%。但是,
我们证明了3台计算量子量子交互协议与有效的挑战者和有效对手之间的紧密平行重复定理。我们还证明,在合理的假设下,在并行重复下,4台式计算协议的安全性通常不会降低。这些反映了Bellare,Impagliazzo和Naor的经典结果[BIN97]。最后,我们证明所有量子参数系统都可以一致地编译到等效的3-序列参数系统,从而反映了量子证明系统的转换[KW00,KKMV07]。As immediate applications, we show how to derive hardness amplification theorems for quantum bit commitment schemes (answering a question of Yan [ Yan22 ]), EFI pairs (answering a question of Brakerski, Canetti, and Qian [ BCQ23 ]), public-key quantum money schemes (answering a question of Aaronson and Christiano [ AC13 ]), and quantum零知识参数系统。我们还为量子谓词推导了XOR引理[YAO82]作为推论。
还注意到,该空间平面的发布是按计划推出的美国可重复使用的机器人空间飞机(波音X-37B)的巧合。类似于中国的神经太空飞机,对X-37B的确切操作或功能知之甚少。几次延误后,美国太空部队于2023年12月28日从NASA的KSC在佛罗里达州的SpaceX Falcon Heavy火箭上推出了航天器,比以前针对的轨道更高。两个可重复使用的太空平面的时机并不是偶然的:“这是轨道上轨道上最受关注的对象中的两个。他们试图与我们的时机和顺序相匹配,这可能并非偶然。[4]在发表本文时(2023年1月1日)仍在继续执行。潜在的军事应用:虽然没有公开披露太空平面项目的主要重点,但有人猜测它可以同时具有平民和军事申请。可重复使用的空间平面图可以在启动之间提供快速的周转,这对于某些任务配置文件是有利的。(chatgpt)
农业。然而,关于无人机干扰对动物福祉影响的研究缺乏或有限。本研究的目的是通过测量单次或多次无人机飞行时牛的心率和运动率来研究无人机飞行对肉牛的影响。总共 16-18 头杂交肉牛小母牛被引入不同的飞行模式,飞行高度在 5 到 9 米之间,水平速度约为 1 到 2 米/秒,持续 4 周,每周重复飞行 3 天。研究结果表明,单次无人机飞行(i)圆形和(ii)网格模式飞行对小母牛的心率和运动率没有显着影响。然而,多次(i)圆形模式和(ii)接近式飞行在首次引入无人机时会增加小母牛的心率,但重复飞行会导致习惯。此外,刚开始接触圆形飞行模式的小母牛可能会逃跑,但经过多次飞行后就会习惯。然而,接触接近式飞行模式的小母牛即使经过多次飞行,也表现出更多的逃跑行为。本研究的结果将为安全使用无人机进行牛健康和行为监测提供信息。关键词:无人机、网格模式、圆形模式、心率、
摘要 CRISPR/Cas9 系统 ( 常间回文重复序列丛集 / 常间回文重复序列丛集关联蛋白系统 ) 为靶向基因编辑提 供了强大的技术手段 . 利用序列特异性 sgRNA 的引导 , CRISPR/Cas9 系统能够精准地在目标 DNA 的确切位置导 入双链切口 . 与已有的基因编辑手段相比 , 该系统具有更优异的简便性、特异性和有效性 . 目前 , 大量涉及体内 外多物种的 CRISPR/Cas9 基因编辑研究已充分展示了该技术的巨大潜力 , 为基于该技术的疾病治疗研究和临床 应用带来了希望 . 基于 CRISPR/Cas9 基因编辑技术所介导的非同源性末端连接和同源性 DNA 修复作用 , 近期多 个研究工作已经成功应用该技术修复了包括点突变和基因组缺失等在内的遗传疾病相关基因组缺陷 . 本综述 将总结近期有关利用 CRISPR/Cas9 基因编辑技术治疗人类遗传性疾病的相关临床前研究进展 .