我们考虑这样一种场景:一方(比如 Alice)准备一个纯的两量子比特(最大纠缠或非最大纠缠)状态,并通过量子比特(单元或非单元)通道将该状态的一半发送给另一方(比如 Bob)。最后,共享状态用作隐形传态通道。在这种情况下,我们专注于根据最大平均保真度和保真度偏差(保真度值随输入状态波动)来描述量子比特通道集作为量子隐形传态 (QT) 资源的最终状态有效性。重要的是,我们指出,当初始准备状态对通用 QT 有用(即,对于最大纠缠状态)或对通用 QT 无用(即,对于非最大纠缠纯态的子集)时,存在一个量子比特通道子集,对于该子集,最终状态对通用 QT 有用(最大平均保真度严格大于经典界限,保真度偏差为零)。有趣的是,在后一种情况下,我们表明,非单元通道(耗散相互作用)比单元通道(非耗散相互作用)更有效地从非最大纠缠纯态产生对通用 QT 有用的状态。
物理学家 Klaus Jöns 教授(帕德博恩大学)解释说:“量子隐形传态是指光子状态(即小光粒子)转移到另一个状态。简单来说,发射器和接收器交织在一起。这需要某些产生不可区分光子的光源,使用确定性的光子源是理想的。通常使用由半导体材料制成的量子点。”科学家们没有专注于生产理想的材料,而是研究不完美的量子点,旨在无论情况如何都能以最大的可靠性识别隐形传态。他们使用复杂的测量方法将“隐形传态质量”提高到 84.2%。
在本文中,我们探索了不同量子场论 (QFT) 中的反馈控制协议,以研究量子系统非幺正演化中的量子关联。传统的 QFT 研究侧重于幺正演化下纯态的量子纠缠,然而,我们使用量子能量隐形传态 (QET)(一种利用基态纠缠的能量传输协议)来研究混合态中的量子关联,并引入量子不和谐作为度量。QET 涉及中间电路测量,这会破坏纯态纠缠。尽管如此,我们的分析表明,量子不和谐在整个 QET 过程中保持关联。我们使用包括 Nambu-Jona-Lasinio (NJL) 模型在内的基准模型进行了数值分析,揭示了量子不和谐始终充当相变的序参数。该模型被扩展为同时具有手性化学势和化学势,这对于研究模拟与手性密度算子耦合的左夸克和右夸克之间的手性不平衡的相结构很有用。在我们研究的所有情况下,量子不和谐都表现为相变的序参数。
摘要 人类的视觉感知非常明显,因此通常用语言描述周围的空间并不成问题。相反,人们也很容易想象出一个被描述空间的概念。近年来,人们为开发空间和时空关系的语言方案做出了许多努力。然而,这些系统到目前为止还没有真正流行起来,我们认为这是因为它们所基于的模型很复杂,而且缺乏可用的训练数据和自动标记器。在本文中,我们描述了一个支持空间注释的项目,它可以通过其许多功能促进注释,还可以用更多信息丰富它。这将通过 VR 环境的扩展来实现,通过 VR 环境可以更好地可视化空间关系并将其与真实对象联系起来。我们希望利用现有数据开发一种新的最先进的标记器,从而为未来的系统奠定基础,例如改进 Text2Scene 生成的文本理解。关键词:ISOSpace、ISOTimeML、Unity3D、注释、虚拟现实
主办单位/ Organizer: 中国国际光电博览会 (CIOE 中国光博会) China International Optoelectronic Exposition (CIOE) 中国通信学会光通信委员会 Optical Communication Committee of China Institute of Communications 工信部通信科技委传送与接入专家咨询组 Consulting Group of Transmission and Access Network of Telecommunication Science and Technology Committee of MIIT 中国信息通信研究院技术与标准研究所 Technology Standard Research Institute of China Academy of Information and Communications Technology
引言量子协议领域的研究已经得到了广泛的开展。在量子密码学领域,Ekert [1]使用两个EPR量子比特(Einstein、Podolsky、Rosen)的状态作为状态紧密性测试器,并在Bennet通信协议[2]中通过单粒子和双粒子算子共享这个EPR。1993年,Bennet等人[3]首次提出了通过EPR通道进行一个量子比特状态的量子隐形传态的理论协议。量子隐形传态是通过划分量子纠缠态和涉及一些非局部测量的经典态,在发送者(Alice)和接收者(Bob)之间的不同地方发送任意数量的无法识别的量子比特的过程。一般来说,Alice中的非局部测量采用射影测量,而Bob中的非局部测量则是幺正操作。还有一些协议,其非局部测量是通过 Aharanov 和 Albert [4] 的方法实现的,Kim 等人 [5] 的实验和 Cardoso 等人 [6] 的工作中实现了非线性相互作用,这些相互作用利用了状态源腔和通道源之间的共振。对于任意两个比特的纠缠态,量子通道的选择是通过 Schmidt 分解测试 [23] 获得的,而在多立方体中,则是通过其约化密度矩阵的秩值的组合 [24] 获得的。
该指南旨在作为各种收购问题的入门,并且可能不会对每个主题进行冗长的讨论。鼓励用户咨询指南的每个部分中所述的其他材料,以获取补充信息。注意:收购指南中使用的“高级采购主管”是指收购管理办公室主任。doe,非国家核安全管理局(NNSA)活动,以及国家核安全管理局的NNSA活动管理员。在大多数情况下,NNSA的管理人员与执行人员相关的当局已委派给NNSA的收购管理局长。《收购指南》将由政策办公室发布和维护,并将修改以添加材料或根据需要修改现有材料。DOE收购指南将按季度更新 - 有关其他主题的索引,并应将其定向到该指南的修订,应直接送至doe_oapmpolicy@hq.doe.gov。
小胶质细胞在淀粉样β(Aβ)斑块附近被激活,但是小胶质细胞是否有助于β向未受影响的大脑区域的β传播仍然未知。使用野生型(WT)神经元的转移,我们表明β进入WT移植物,并且伴随着小胶质细胞浸润。小胶质细胞功能的操纵减少了移植物中的β沉积。此外,体内成像将小胶质细胞鉴定为先前未受影响的组织中β病理的载体。因此,我们的数据主张迄今未探索β传播的机制。β的聚集是阿尔茨海默氏病(AD)发病机理中必不可少的早期触发因素,导致神经原纤维缠结,神经元功能障碍和痴呆1。由于它们与β斑块2-4的密切关联,已经提出了几种细胞类型的因果关系,包括小胶质细胞,包括小胶质细胞。在大脑中形成β斑块后,小胶质细胞与它们建立了亲密的接触并成为反应性5,6。那些活化的小胶质细胞已通过β摄取与牙菌斑的生长有关,然后是小胶质细胞死亡7、8。我们的小组和其他人最近在β播种9 - 11中牵涉到小胶质细胞,但它们在传播β病理学中的作用仍然难以捉摸。在支持“致病性扩散”假设12中,先前的移植实验表明,源自跨基因宿主组织的β能够入侵并沉积在非转基因移植物中,从而导致神经变性13 - 15。1a,b和扩展数据图1a,b)13。1A和扩展数据图然而,β扩散到WT移植物中的机制尚不清楚,并且迄今尚未证明细胞介导的机制。在这项研究中,我们将wt小鼠的胚胎神经元细胞移植到了年轻的,前置前的5xfad trans-transic小鼠的新皮细胞中,确认了移植到宿主组织中以及几个月内的移植物的存活(图。在移植后4周后立即存在β斑块,它们随着时间的推移而增加(图。1a – c,黄色箭头)。我们首先假设App/Aβ被前进运输