1911 年至 1919 年期间,海军在海军航空领域做出了开创性贡献。1911 年,海军采购了第一架飞机 Curtiss A-1,开始对航空产生浓厚兴趣。这架飞机在技术上与莱特兄弟的第一架飞机相似,但动力更强,可以利用其大型中央浮筒从水中起飞。当时,美国没有大学提供航空工程学位,甚至没有航空工程课程,也没有任何政府航空实验室。航空工程实践在很大程度上是一个反复试验的过程。虽然这种方法对于 A-1 等小型飞机很成功,但它对开发更大、性能更强大的飞机构成了重大障碍。在海军少将 David W. Taylor 的领导下,海军的“实验风洞”在华盛顿海军船厂的海军实验模型盆地旁边设计和建造,以推动航空工程的发展。海军的新风洞是世界上最大的风洞,也是海军空气动力学实验室的核心。该实验室和在泰勒领导下在那里工作的海军建造者开发并改进了测试完整飞机和飞机部件比例模型的方法。这些实验提供了有效设计大型飞机所需的数据,并促成了海军 NC 飞艇的成功。1919 年,NC 成为第一架飞越亚特兰大的飞机
摘要 — 在不久的将来,城市空中交通领域的垂直起降飞机将融入民用空域,它们将具有多种级别的自主飞行能力。全球许多国家正在资助多项研究,以确定和开发使城市空中交通与现代航空一样安全的技术。这些飞机最关键的方面之一是依靠减小的机身尺寸和机上可用空间来容纳商业航空中常用的所有安全关键系统。空中数据系统是安全关键系统之一,配备了多个探头和叶片,从飞机机身外部伸出,其某些功能对于通用航空和大型飞机而言具有足够的冗余性。尽管适用于城市空中交通的适航标准尚未准备好,但全球范围内已有多项努力将在未来几年内促成型号认证标准。本文简要介绍了可用于为空气数据系统提供传感解决方案的认证技术以及几年内可认证的基于合成传感器的解决方案。该调查依赖于经过认证和可认证的创新数据传感单元,以实现现实的城市空中交通应用。为此,提出了安全评估分析,以支持本文提出的可认证空气数据传感解决方案的有效性。索引术语 — 合成传感器、城市空中交通、空气数据系统、空气数据探测器
1911 年至 1919 年期间,海军在海军航空领域做出了开创性贡献。1911 年,海军采购了第一架飞机 Curtiss A-1,开始对航空产生浓厚兴趣。这架飞机在技术上与莱特兄弟的第一架飞机相似,但动力更强,可以利用其大型中央浮筒从水中起飞。当时,美国没有大学提供航空工程学位,甚至没有航空工程课程,也没有任何政府航空实验室。航空工程实践在很大程度上是一个反复试验的过程。虽然这种方法对于 A-1 等小型飞机很成功,但它对开发更大、性能更强大的飞机构成了重大障碍。在海军少将 David W. Taylor 的领导下,海军的“实验风洞”在华盛顿海军船厂的海军实验模型盆地旁边设计和建造,以推动航空工程的发展。海军的新风洞是世界上最大的风洞,也是海军空气动力学实验室的核心。该实验室和在泰勒领导下在那里工作的海军建造者开发并改进了测试完整飞机和飞机部件比例模型的方法。这些实验提供了有效设计大型飞机所需的数据,并促成了海军 NC 飞艇的成功。1919 年,NC 成为第一架飞越亚特兰大的飞机
子部分 A-一般规定 GM 21.3(a) 数据收集、调查和分析系统 在该要求的上下文中,“收集”一词是指建立系统和程序,以便在发生相关故障、失效和缺陷时能够正确报告。GM 21.3(b) 事件报告 有关事件报告,请参阅 AMC 20 中的 AMC 20-8。AMC 21.3(b) (2) 向 CARC 报告 在 72 小时的总限制内,提交报告的紧急程度应根据判断为由事件造成的危害程度来确定。如果识别潜在不安全状况的人员判断某一事件已导致立即且特别重大的危害,CARC 希望立即通过最快的方式(电话、传真、电子邮件、电传等)通知当时可获得的任何详细信息。必须在 72 小时内提交完整的书面报告,以跟进此初始报告。典型示例是发动机失控故障导致飞机主要结构损坏。如果判断该事件已导致不太立即且不太重大的危害,则报告提交可能会延迟最多三天,以提供更多详细信息。GM 21.3B (d) (4) 缺陷纠正 - 拟议纠正措施的充分性 本 GM 提供指导方针,以协助建立整改活动来修复发现的缺陷。1.状态 本文件包含一般性通用原则,可与工程判断结合使用,帮助适航工程师根据当时的技术状态做出决策。虽然本通用原则的主要原则可应用于小型私人飞机、直升机等。为说明而选择的数值适用于用于公共交通的大型飞机。2.引言 2.1 多年来,适航要求所依据的目标适航风险水平是在传统定性适航方法的基础上发展起来的;近年来,通过与已实现的适航水平(根据事故统计数据判断)进行比较,以及通过引入合理性能要求和最近引入要求中的安全评估方法,这些目标适航风险水平得到了更高的精确度。虽然目标
子部分 A-一般规定 GM 21.3(a) 数据收集、调查和分析系统 在该要求的上下文中,“收集”一词是指建立系统和程序,以便在发生相关故障、失效和缺陷时能够正确报告。GM 21.3(b) 事件报告 有关事件报告,请参阅 AMC 20 中的 AMC 20-8。AMC 21.3(b) (2) 向 CARC 报告 在 72 小时的总限制内,提交报告的紧急程度应根据判断为由事件造成的危害程度来确定。如果识别潜在不安全状况的人员判断某一事件已导致立即且特别重大的危害,CARC 希望立即通过最快的方式(电话、传真、电子邮件、电传等)通知当时可获得的任何详细信息。必须在 72 小时内提交完整的书面报告,以跟进此初始报告。典型示例是发动机失控故障导致飞机主要结构损坏。如果判断该事件已导致不太立即且不太重大的危害,则报告提交可能会延迟最多三天,以提供更多详细信息。GM 21.3B (d) (4) 缺陷纠正 - 拟议纠正措施的充分性 本 GM 提供指导方针,以协助建立整改活动来修复发现的缺陷。1.状态 本文件包含一般性通用原则,可与工程判断结合使用,帮助适航工程师根据当时的技术状态做出决策。虽然本通用原则的主要原则可应用于小型私人飞机、直升机等。为说明而选择的数值适用于用于公共交通的大型飞机。2.引言 2.1 多年来,适航要求所依据的目标适航风险水平是在传统定性适航方法的基础上发展起来的;近年来,通过与已实现的适航水平(根据事故统计数据判断)进行比较,以及通过引入合理性能要求和最近引入要求中的安全评估方法,这些目标适航风险水平得到了更高的精确度。虽然目标
电磁兼容性 (EMC) 工程师使用“噪声”的概念来描述降低电子设备性能的有害信号。在航空电子应用中,外部和内部 EMI 噪声源都可能干扰敏感的导航和战术设备,甚至可能破坏飞机的控制。航空母舰的大型电子设备舱可能会造成干扰,导致飞机起飞或降落失败。影响卫星传输的 EMI 可能导致战场上的通信故障。出于这些原因,EMI 被认为是一个严重的问题,并且已经开发出许多技术和技巧来确保数据传输系统中的电磁兼容性 (EMC) - 从船上到海底,从航空电子设备到太空,从航空母舰到微型无人机。 EMI 源 EMI“噪声”源可分为三类:1) 由物理系统内的随机波动引起的固有噪声,例如热噪声和散粒噪声;2) 来自电机、开关、电源、数字电子设备和无线电发射器的人为噪声;3) 来自自然干扰的噪声,例如静电放电 (ESD)、闪电和太阳黑子。 固有噪声源可能非常微妙,通常无法识别。所有电气系统都是固有噪声的潜在来源,包括便携式收音机、MP3 播放器、手机等常见设备。这些设备只要开启就会造成干扰。这是因为导电介质或半导体器件中的电子在受到外部电压激发时会产生电流。当外部施加的电压停止时,电子会继续移动,随机地与其他电子和周围材料相互作用。即使没有电流,这种随机电子运动也会在导电介质中产生噪声。人为 为了保护航空电子系统免受人为噪音的影响,商业航班上完全禁止使用故意的射频 (RF) 发射器,如手机、蓝牙配件、CB 无线电、遥控玩具和对讲机。笔记本电脑、手持式扫描仪和游戏机虽然不是故意的发射器,但会产生 1 MHz 范围内的信号,从而影响航空电子设备的性能。导航电缆和其他关键线路沿着机身铺设,乘客坐在几英尺远的地方。由于构成客舱内部的薄介电材料片(通常是玻璃纤维)根本不提供任何屏蔽;而且由于商用客机包含长达 150 英里的电线,这些电线可能像一个巨大的天线一样,因此乘客必须注意有关使用潜在破坏性电子设备的规定。显然,这些内部 EMI 源对飞机来说非常危险,因为它们离它们可能影响的系统非常近。但外部来源,地面上的无线电和雷达发射器,或过往军用飞机的雷达,驾驶舱航空电子设备容易受到多种 EMI 源的影响,包括 iPhone 和其他 PED 的人为干扰,由于这些设备的高功率和高频率,干扰可能更大。如果许多外部和内部 EMI 源还不够令人担忧,铝制机身本身在某些情况下可以充当 1 到 10 MHz 范围内的谐振腔。机身的行为与卫星天线非常相似,可以通过集中人为和自然发生的瞬态信号并将干扰广播到附近的设备来加剧内部和外部 EMI 的影响。一家大型飞机制造商最近发布的一份报告说明了人们对乘客携带的便携式电子设备 (PED) 的持续担忧。商用飞机上这些设备的数量激增,尤其是随着 Apple iPad 等新型笔记本电脑设备的出现。使用 PED 会产生
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。 GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而受到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍,重量仅为传统钛风扇叶片的三分之一 - 现已成为 GE 宽体发动机的标志 世界纪录推力发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材制造部件 发动机获得 FAA 批准,可使用增材制造压缩机传感器 GE 继续投资和改进发动机。GE 工程师改进了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发射规格相比,燃油消耗减少了 3.6% 在翼时间缩短了 60% 世界一流的 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其全球维护、维修和大修 (MRO) 提供商网络可随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机以满足具有目标工作范围的预期生命周期,从而优化硬件利用率并最大限度地降低拥有成本。额定推力为 94,000 磅GE90-94B 发动机以早期 GE90 发动机型号的成功经验为基础,为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后。GE 交付了 GE90-115B 发动机,该发动机目前为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证,起飞推力为 380 kN(85,000 磅)。,对于像 777 这样可搭载 375 名乘客(重量约 230 吨)的大型飞机,仅需两台发动机即可。作为 GE/NASA 节能发动机 (E3) 计划的衍生产品,它也是当今最省油、最安静、最环保的发动机。除了提供最大的推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率改进、更低的噪音污染和比当今高涵道比发动机低 33% 的氮氧化物排放量。本次研讨会试图通过简要介绍发动机的功能来突出介绍发动机的各个方面。2 对比高推力级涡扇发动机 (> 200 kN) (修改自 [2]) GE-90 CF6-50C2 CF6-80C2公司通用电气 (美国)通用电气 (美国)通用电气 (美国)自 1995 年 9 月 1978 年 10 月 1985 年 10 月开始使用在空客 A-340 和 B-777 KC-10 (军用) A-300/310, 747/767 上首次飞行描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 mm 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO时推力 388.8 kN 233.5 kN 276 kN巡航时推力 70 kN 50.3 kN 50.4 kNS.F.C.(SLS) 8.30 mg/N-s 10.51 mg/N-s 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/sFADEC的存在* 是 否 是其他信息 NOx排放量降低33%。噪音低于同级其他 TF(由于风扇叶尖速度低)LPT 的 TET 为 1144 K。燃油消耗(s.f.c.)低于其他发动机,寿命长,可靠性高。RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5 TO 推力 269.4 kN 366.1 kN 202.3 kN 巡航推力 52.1 kN 72.2 kN 176.3 kNS.F.C.15.95 mg/N-s(巡航) 15.66 mg/N-s(巡航) 10.06 mg/N-s 空气质量流量 728 kg/s 728+ kg/s 687 kg/s FADEC(Y/N) 否 是 否其他信息 合同中(截至 1995 年 9 月)世界上功率最强大的传统空调发动机(Trent 772) *FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作量。• 降低飞机运营成本。分析理论可参见 [3]。低推力级涡扇发动机 (< 200 kN)(根据 [2] 修改)3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底 1970 年 2 月 1988 年 7 月开始使用 首次飞行于空客 A-340 波音 727/737 和 DC-9 空客 A-320 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约)1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长度 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米压力比 37.4 17.3 29.4涵道比 6.6 1.00 5.42TO时推力 138.8 kN 72.9 kN 111.25 kN巡航时推力 30.78 kN 18.9 kN 21.6 kN S.F.C.16.06 mg/N-s 23.37 mg/N-s 16.29 mg/N-s空气质量流量 466 kg/s 148 kg/s 355 kg/sFADEC(Y/N) 是 否 是其他信息 4 GE-90涡扇发动机循环分析 以下是借助计算机程序进行的简单高涵道比涡扇发动机循环分析的结果。可以从[4]中获得更广泛和准确的分析。GE90 发动机的可用数据仅限于其起飞推力、涵道比 (BPR) 和总压比 (OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(如 CF6-80C2 和 CFM56)并考虑了适当的改进而假设的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(km)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300m f(千克/秒)1.079 2.968SFC(毫克/氮-秒)15.600 7.910Sp。推力 (N-s/kg) 120.100 278.100 计算得出的巡航推力值与配备两台 GE90 发动机的波音 777 飞机所需的推力非常接近,即每台发动机约 65-70 kN。GE 于 1990 年 1 月宣布开发 GE90。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上的 228 小时飞行时间。GE90 耐力发动机完成了超过 14,000 个循环,并表现出出色的分段耐久性。(489 kN) 的推力。93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 的关系 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 的关系 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0推力 SFC 推力和 SFC 与 TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 GE90 获得 FAA 认证,GE 航空发动机公司完成了有史以来由发动机制造商进行的最广泛的地面和飞行测试项目之一。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台完整的发动机问世。unisolve_pharmacy_software_manual.pdf 从那时起,GE 及其收益分享参与者共运行了 13 台开发发动机,这些发动机验证了发动机固有的设计优势。七台发动机的推力超过 100,000 磅。(444.5 kN),其中一台发动机的推力达到创纪录的 110,000 磅。事实上,GE90 开发发动机的推力水平已超过 100,000 磅。(444.5 kN),持续超过 65 小时。作为所需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅。(1.13 和 3.63 千克) 的发动机复合叶片鸟类吞食测试。1994 年 10 月,四只 2.5 磅的鸟被吸入,发动机以产生 85,000 磅(377.8 kN) 推力所需的速度运行,在炎热的天气下起飞。没有推力损失,发动机在吸入后所需的 20 分钟运行期间响应所有油门命令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运行。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片脱落测试。34042629589.pdf 为什么要使用全新发动机?释放叶片在风扇转速为 2,485 rpm 时引爆,比目标高出 10rpm,发动机产生超过 105,000 lb。(466.8kN) 的海平面静态 (SLS) 校正推力。发动机支架系统按设计运行,测试展示了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在整个测试的第一阶段,发动机在 45 次飞行中累计运行近 228 小时。发动机性能异常出色,性能水平超出规格,并在整个飞行包线内为飞行员提供不受限制的油门运动。市场需求 从历史上看,飞机的重量和推力要求一直在增长。低底盘汽车展评判评分表 如今,市场青睐重量更重、航程更长且内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于采用 GE90 动力的大型宽体飞机。为航空公司的未来做好准备 • 适用于整个新型大型飞机系列的通用发动机。• 新型宽体飞机所需的推力比当今的发动机高 20-30%。• 飞机历史上需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内置的总体性能优势 • 比当今的发动机高 10% 的 SFC。• 具有通用性的高推力增长。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计 GE90 的设计目的在于: • 推力增长。• 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9 • 低排放。• 低噪音。• 降低运营成本。选择循环以节省大量燃料。其余的乘法和除法依次为 • 优化了旁通比。• 优化了总压比。• 为最低 SFC 和燃油消耗而设计。10.sinıfya coru bankası pdf 选择的设计可最大限度地提高航空公司的利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商开发的维护程序。• 低噪音和低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证为 84,700 磅。(533.4 kN)。复合材料风扇 2。(376.5 kN) 推力 - 1995 年 2 月• 首次增长认证为 92,000 磅。(408.9 kN) 推力 - 1996 年 5 月。• 可能增长到 120,000 磅。高推力和测试经验总结• > 422.3 kN 下运行超过 145 小时• > 435.6 kN 下运行超过 95 小时• > 440.0 kN 下运行超过 75 小时• > 444.5 kN 下运行超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时 注:海平面静态 (SLS) 校正推力水平 八台 GE90 发动机已在 445 kN 或以上的 SLS 推力下运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证 (490.3 kN)。• 三重红线块测试的“彩排”。• 1.13 kg 伯德认证/叶片脱落认证。10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1.低压压缩机 (LPC)/助推器3.高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5.高压涡轮机 (HPT)6.低压涡轮 (LPT) 11 复合材料风扇 GE90 风扇设计 风扇图 • 22 复合材料宽弦叶片和平台。• 大风扇直径,可实现更高的空气流量。• 风扇齿轮传动 - 降低风扇叶尖速度,从而产生更少的噪音。• 低叶尖速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查,重量更轻。• 混合(锥形/椭圆形)旋转器,减少核心碎片的摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。GE90 风扇叶片 风扇叶片 • 宽弦复合材料风扇 - 高性能、低重量。• 环境阻力 - GE90 风扇材料系统表现出与当前飞机复合材料相同的环境阻力。12 • GE90 风扇复合材料系统与目前在用的风扇复合材料系统类似。• 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。• 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。燃烧室 • 成功的先进军用项目的双圆顶环形燃烧室。• 降低 NOX 排放水平(低至 10 ppm。)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 圆顶气动热调节功率设置。• 高度重新点火能力 30,000 英尺(9.144 公里),有裕度。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为第 1 级和第 2 级。los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的放大在测试单元和飞行测试中展示了性能和可操作性。• 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 刚性、简单支撑的转子系统(如 CFM56)可实现动态稳定性。• 仿照成功的 CF6-80 设计而构建的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统功能。• 具有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 具有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。15 其他特点 ([2]) GE90 与环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体降低任务总燃料消耗 = 降低任务总污染物。• 推力与核心流量比更高。GE90 燃烧室提供更好的可操作性,同时降低排放水平 • 双环形燃烧室。• 飞行员圆顶针对可操作性进行了优化 - 主圆顶针对高功率进行了优化。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 已验证排放水平。可运输性• 专为标准发动机运输方法而设计。GE90推进器• 比当今的高涵道比涡扇发动机更小 GE90模块化设计• 仅允许更换推进器• 将推进器/喷嘴与风扇定子模块分开• 风扇定子模块保留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,110,000磅。通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。• 422.3 - 435.6 kN 风扇改进的涡轮机械。18 参考文献 1.• 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。• 466.8 kN 风扇带有分离式核心的更高 P/P 风扇。• 511.2 + kN TF带有分离式核心的更高速度和 P/P 风扇。17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然无法获得有关该发动机的确切技术信息,例如其重量、压力比、TIT、巡航推力、sf.c 等。导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,在推力和燃油效率方面,该发动机是独一无二的。
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而得到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍而重量仅为传统钛风扇叶片的三分之一 – 现已成为 GE 宽体发动机的标志 世界推力纪录发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材部件 发动机获得 FAA 批准可使用增材制造压缩机传感器 GE 一直在投资和改进发动机。GE 工程师已经增强了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发布规格相比,燃油消耗降低了 3.6% 在翼时间提高了 60% 达到世界一流水平 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其及其全球维护、维修和大修 (MRO) 提供商网络可以随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机,通过有针对性的工作范围满足所需的生命周期,优化硬件利用率并最大限度地降低拥有成本。GE90-94B 发动机的额定推力为 94,000 磅,建立在早期 GE90 发动机型号的成功经验之上,用于为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后推力,GE 交付了 GE90-115B 发动机,现在为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证的起飞推力为 380 kN(85,000 磅),仅需两台发动机便足以满足 777 等大型飞机的需要,该飞机可搭载 375 名乘客(重量约为 230 吨)。它是 GE/NASA 节能发动机 (E3) 项目的衍生产品,也是燃油效率最高的发动机,当今最安静、最环保的发动机。除了提供最高推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率提升、更低的噪音污染和 33% 的 NOX 排放量,比当今的高涵道比发动机低。本次研讨会试图通过简要介绍发动机的特点来突出发动机的各个方面。 2 比较高推力级涡扇发动机 (> 200 kN) (根据 [2] 修改) GE-90 CF6-50C2 CF6-80C2 公司通用电气 (美国) 通用电气 (美国) 通用电气 (美国) 自 1995 年 9 月 1978 年 10 月开始使用 1985 年 10 月首次在空客 A-340 和 B-777 上飞行 KC-10 (军用) A-300/310, 747/767 描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 毫米 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO推力 388.8 kN 233.5 kN 276 kN巡航推力 70 kN 50.3 kN 50.4 kNS。燃油消耗(SLS) 8.30 mg/Ns 10.51 mg/Ns 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/s是否存在FADEC* 是 否 是其他信息 NOx排放量降低33%。噪音比同级别的其他TF发动机低(由于风扇尖端速度低)。LPT的TET为1144 K。燃油消耗(sfc)比其他发动机低,寿命长,可靠性高。 RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310 描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5TO 时推力 269.4 kN 366.1 kN 202.3 kN巡航时推力 52.1 kN 72.2 kN 176.3 kNS.FC 15.95 mg/Ns(巡航)15.66 mg/Ns(巡航)10.06 mg/N-s空气质量流量 728 kg/s 728+ kg/s 687 kg/sFADEC(Y/N)否是否其他信息合同中(截至 95 年 9 月)世界上功率最强大的常规空调发动机(Trent 772)*FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作负担。• 降低飞机运营成本。低推力级涡扇发动机 (< 200 kN) ([2] 之后改进) 3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底开始使用 1970 年 2 月 1988 年 7 月 首次在空客 A-340 波音 727/737 和 DC-9 空客 A-320 上飞行 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约) 1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米 压力比 37.4 17.3 29.4 涵道比 6.6 1.00 5.42 TO 时推力 138.8 kN 72.9千牛 111.25 kN巡航推力30.78 kN18.9 kN21.6 kN SFC16.06 mg/Ns23.37 mg/Ns16.29 mg/N-s空气质量流量466 kg/s148 kg/s355 kg/sFADEC(Y/N)是否是其他信息4 GE-90涡扇发动机循环分析以下是借助计算机程序进行的简单大涵道比涡扇发动机循环分析的结果。分析理论可参见[3]。更广泛和准确的分析可参见[4]。GE90发动机的可用数据仅限于其起飞推力、涵道比(BPR)和总压比(OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(例如 CF6-80C2 和 CFM56)并考虑了适当的改进而得出的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(公里)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300mf(千克/秒)1.079 2.968SFC(毫克/纳秒)15.600 7.910Sp。推力(Ns/kg) 120.100 278.100 计算出的巡航推力值与装有两台 GE90 发动机的波音 777 飞机所需的推力(每台发动机约 65-70 kN)非常接近。 93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 推力SFC 推力 & SFC vs TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 FAA 对 GE90 的认证,GE 航空发动机公司完成了有史以来最广泛的地面和飞行测试项目之一,这是发动机制造商开展过的项目之一。GE 于 1990 年 1 月宣布开发 GE90。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台全尺寸发动机投入使用。unisolve_pharmacy_software_manual.pdf 自那时起,GE 及其收益共享参与者共运行了 13 台开发发动机,验证了发动机固有的设计优势。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上飞行的 228 小时。GE90 耐力发动机完成了超过 14,000 个循环,并展示了出色的分段耐久性。七台发动机的推力超过 100,000 磅(444.5 千牛),其中一台创下了 110,000 磅(489 千牛)的推力纪录。事实上,GE90 开发发动机的推力水平已超过 100,000 磅(444.5 千牛),持续超过 65 小时。作为必需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅(1.13 千克和 3.63 千克)的复合叶片鸟吞测试。1994 年 10 月,在炎热天气下,四台 2.5 磅的鸟被吞噬,发动机以产生 85,000 磅(377.8 千牛)推力所需的速度运转。没有推力损失,发动机在吸入后所需的 20 分钟运行时间内响应所有油门指令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运转。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片引爆测试。释放叶片以 2,485 rpm 的风扇速度引爆,比目标速度高出 10rpm,发动机产生超过 105,000 磅(466.8kN)的海平面静态(SLS)校正推力。发动机支架系统按设计运行,测试证明了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在第一阶段的测试中,该发动机在 45 次飞行中累计飞行了近 228 小时。发动机表现异常出色,其性能水平超出规格,并在整个飞行包线内为飞行员提供了不受限制的油门运动。34042629589.pdf 为什么要使用全新发动机?市场要求从历史上看,飞机的重量和推力要求不断增加。lowrider 汽车展评判评分表今天,市场青睐重量更重、航程更远、内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于使用 GE90 驱动的大型宽体飞机。为航空公司的未来做好准备 • 为整个新型大型飞机系列提供通用发动机。• 新型宽体飞机需要比现在的发动机高 20-30% 的推力。• 历史上飞机需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内在的总体性能优势• 比今天的发动机高 10% 的 SFC。• 高推力增长与通用性。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计GE90 设计用于:• 推力增长。• 与 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9• 低排放。• 低噪音。• 降低运营成本。选择可显著节省燃油的循环。总计其余乘以三级• 涵道比优化。• 总压比优化。• 设计用于最低 SFC 和燃油消耗。 10. 总结 pdf 选择的设计可使航空公司获得最大利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商制定的维护程序。• 低噪音、低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证推力为 84,700 磅(376.5 kN)- 1995 年 2 月• 首次增长认证推力为 92,000 磅(408.9 kN)- 1996 年 5 月。• 可能增长到 120,000 磅(533.4 kN)。高推力和测试经验总结• > 422.3 kN 下超过 145 小时• > 435.6 kN 下超过 95 小时• > 440.0 kN 下超过 75 小时• > 444.5 kN 下超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时注:海平面静态(SLS)校正推力水平八台 GE90 发动机已在 445 kN 的 SLS 推力下或以上运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证(490.3 kN)。• 三重红线段测试“彩排”。• 1.13 公斤鸟牌认证/叶片伸出认证。 10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1. 复合风扇2. 低压压缩机 (LPC)/增压器3. 高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5. 高压涡轮 (HPT)6. 低压涡轮 (LPT) 11 复合风扇 GE90 风扇设计 风扇图 • 22 个复合宽弦叶片和平台。• 大风扇直径可实现更高的空气质量流量。• 风扇齿轮传动 - 降低风扇尖端速度,从而产生更少的噪音。• 低尖端速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查并减轻重量。• 混合(圆锥形/椭圆形)旋转器,减少核心碎片摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。 GE90 风扇叶片 风扇叶片 • 宽弦复合风扇 – 性能高、重量轻。• 耐环境性 – GE90 风扇材料系统表现出与当前飞机复合材料相同的耐环境性。12 • GE90 风扇复合材料系统与目前服役的风扇复合材料系统类似。 • 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。 • 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。 复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。 los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的扩大规模在测试单元和飞行测试中都展示了性能和可操作性。 燃烧室 •来自成功的先进军事计划的双圆顶环形燃烧室。 • 降低 NOX 排放水平(低至 10 ppm)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 针对功率设置进行调节的圆顶气动热调节。• 高度重新点火能力 30,000 英尺(9.144 公里),留有余地。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为 1 级和 2 级。 • 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 类似于 CFM56 的刚性、简单支撑转子系统,可实现动态稳定性。• 仿照成功的 CF6-80 设计设计的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统特点。• 带有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 带有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。 15 其他特点 ([2]) GE90 和环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体上降低任务总燃料消耗 = 降低任务总污染物。• 提高推力与核心流量比。 GE90 燃烧室在降低排放水平的同时提高了可操作性 • 双环形燃烧室。• 优化了飞行员圆顶以提高可操作性 - 优化了主圆顶以提高功率。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发经验。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 验证了排放水平。 可运输性• 针对标准发动机运输方法设计。GE90推进器• 比今天的高涵道比涡扇发动机更小 GE90模块化设计• 只允许更换推进器• 推进器/喷嘴与风扇定子模块分离• 风扇定子模块留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。 • 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。 • 422.3 - 435.6 kN 风扇改进的涡轮机械。 • 466.8 kN 风扇带有降级核心的更高 P/P 风扇。 • 511.2 + kN TF带有降级核心的更高速度和 P/P 风扇。 17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。 85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然缺乏有关该发动机的确切技术信息(例如其重量、压力比、TIT、巡航推力、sfc 等),导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,它在推力和燃油效率方面是独一无二的。18 参考文献 1.
