量子计算机旨在利用量子力学现象在某些任务上超越传统计算机。虽然早期的量子设备(如量子退火器)仅限于实现专门的算法,但过去十年出现了通用门模型量子计算机,能够实现任何可以表示为一系列量子逻辑门的算法。在这个模型中,量子门被应用于量子比特,即量子处理器的基本存储单元,让人想起经典计算中逻辑门被应用于比特。虽然目前的门模型处理器仍然很小,处于嘈杂的中尺度量子 (NISQ) 领域,但它们已经实现了令人兴奋的发展,例如云端量子计算机的可用性 [10,13],以及在采样随机量子电路背景下实现量子霸权 [3]。此外,完善的量子纠错和量子容错理论为实现容错、可扩展的量子计算机的大量工程努力提供了基础 [33]。
论文提交:欢迎作者提交上述领域的原创和未发表的论文。作者必须先提交一段摘要,然后提交最终论文以供审查。提交的论文不得超过 6 页,并遵守 IEEE 会议模板,即 2 栏样式(可在会议网站上找到)。论文可以作为普通论文或短文接受。这两种类型的论文都将收录在 IEEE 论文集中。论文集的页数限制为普通论文 6 页和短文 4 页。被接受为短文的 6 页论文的作者必须将其缩减为 4 页才能发表。欢迎提交在 RISC-V 峰会上展示或提交的相关工作的完整论文版本。请参阅研讨会网页以获取最新信息。特别会议征集:也欢迎提交特别会议提案。有关更多信息,请访问研讨会网站并查看具体征集。论文出版:只接受原创、未发表的作品。会议论文集将由 IEEE 计算机学会出版,并将出现在数字图书馆中。作者注册:每篇被接受的论文在提交照相排版论文时必须至少有一个完全付费的注册,并且必须有一名作者参加研讨会。最佳论文奖:委员会将选出最佳论文奖和最佳学生论文奖,并在会议上颁发。与会议相关的期刊特刊:DFTS 2025 被接受的论文的作者将被邀请向专门针对 2025 年会议的区域期刊的特刊提交该作品的扩展版本。未来的作者应遵守以下截止日期:摘要提交:2025 年 4 月 27 日全文提交:2025 年 5 月 4 日录取通知:2025 年 7 月 8 日照相排版和作者注册:2025 年 7 月 25 日
对于通用量子计算,实际实施需要克服的一个主要挑战是容错量子信息处理所需的大量资源。一个重要方面是实现由量子纠错码中的逻辑门构建的任意幺正算子。通过组装从一小组通用门中选择的逻辑门序列,可以使用合成算法将任何幺正门近似到任意精度,这些通用门在量子纠错码中编码时可容错执行。然而,目前的程序还不支持单独分配基本门成本,许多程序不支持扩展的通用基本门集。我们使用基于 Dijkstra 寻路算法的穷举搜索分析了标准 Clifferd+T 基本门集的成本最优序列,并将其与另外包括 Clifferd 层次结构更高阶的 Z 旋转时的结果进行了比较。使用了两种分配基本门成本的方法。首先,通过递归应用 Z 旋转催化电路将成本降低到 T 计数。其次,将成本指定为直接提炼和实现容错门所需的原始(即物理级)魔法状态的平均数量。我们发现,使用 Z 旋转催化电路方法时,平均序列成本最多可降低 54 ± 3%,使用魔法状态提炼方法时,平均序列成本最多可降低 33 ± 2%。此外,我们通过开发一个分析模型来估计在近似随机目标门的序列中发现的来自 Clifford 层次结构高阶的 Z 旋转门组的比例,从而研究了某些基本门成本分配的观察局限性。
本文旨在介绍两种容错架构,用于需要操作可靠性和可用性的机电系统控制。其中一种架构的处理单元是 PIC 16F84A ,另一种架构的处理单元是 Basic Step 2K 。这两种架构都由三个相同的模块组成,它们通过编程实现的协议进行通信。它们能够以对应用程序透明的方式检测模块中的故障。换句话说,不会干扰或中断控制任务。在这两种架构中,如果模块出现故障,可以将其留待维护,然后重新集成到系统中,而不会导致受控机电系统闲置。文章中详细介绍了两种架构之间的差异和相似之处、硬件和软件项目的特点以及对其性能的考虑。关键词可用性、嵌入式、容错、微控制器、可靠性。Musme 2005,国际多体系统和机电一体化研讨会。Uberlandia(巴西)2005 年 3 月 6-9 日论文编号 ____- MUSME05。
摘要 — 在过去十年中,近似计算 (AxC) 已被研究作为一种可能的替代计算范式。它已被用于降低传统容错方案(如三重模块冗余 (TMR))的开销成本。最近的提议之一是四重近似模块冗余 (QAMR) 的概念。QAMR 降低了相对于传统 TMR 结构的开销成本,同时保证了相同的容错能力。在本文中,我们提出了一种新的近似技术来实现 QAMR,并进行了设计空间探索 (DSE) 以找到 QAMR 帕累托最优实现。此外,我们为所提出的架构提供了一个新的多数表决器的设计。实验结果表明,对于 FPGA 和 ASIC 技术,分别有 85.4% 和 97% 的电路可以找到与 TMR 对应物相比实现面积和/或延迟增益的 QAMR 变体。索引词 — 容错;纠错;三重模块冗余;TMR;近似计算;四重近似模块冗余;QAMR;数字电路;近似计算
量子密集输出问题是使用量子计算机评估时间相关量子动力学中时间累积的可观测量的过程。该问题经常出现在量子控制和光谱计算等应用中。我们提出了一系列旨在在早期和完全容错量子平台上运行的算法。这些方法借鉴了振幅估计、汉密尔顿模拟、量子线性常微分方程 (ODE) 求解器和量子卡尔曼线性化等技术。我们针对演化时间 T 和容错率 ǫ 提供了全面的复杂性分析。我们的结果表明,对于某种类型的低秩密集输出,线性化方法几乎可以实现最佳复杂度 O (T/ǫ)。此外,我们对密集输出问题进行了线性化,从而得出包含原始状态的精确有限维闭包。该公式与库普曼不变子空间理论有关,可能在非线性控制和科学机器学习中具有独立意义。
摘要由于其低成本以及需要在本地运行计算密集型算法的需要,卫星和航天器越来越多地采用现成的计算硬件。然而,空间中的硬件暴露于地球上的辐射量明显高于地球上,可能会破坏硬件或导致其输出不正确的结果。我们设想,仅使用软件容忍技术,在太空中运行的商品硬件可以达到相当的容错或接近昂贵且缓慢的辐射硬化硬件。要实现此目标,我们需要解决两个主要的辐射故障场景:硬件过热和无声数据损坏。我们提供了有关这些错误影响的初步数据,并引入了一组解决这些错误的技术。使商品硬件在太空中充分使用,这有望通过数量级来提高低地球轨道卫星的计算能力和成本效益。CCS概念•网络→错误检测和错误校正; •计算机系统组织→可靠性; •软件及其工程→编译器;操作系统;关键字卫星计算,容错,辐射硬化
摘要由于其低成本以及需要在本地运行计算密集型算法的需要,卫星和航天器越来越多地采用现成的计算硬件。然而,空间中的硬件暴露于地球上的辐射量明显高于地球上,可能会破坏硬件或导致其输出不正确的结果。我们设想,仅使用软件容忍技术,在太空中运行的商品硬件可以达到相当的容错或接近昂贵且缓慢的辐射硬化硬件。要实现此目标,我们需要解决两个主要的辐射故障场景:硬件过热和无声数据损坏。我们提供了有关这些错误影响的初步数据,并引入了一组解决这些错误的技术。使商品硬件在太空中充分使用,这有望通过数量级来提高低地球轨道卫星的计算能力和成本效益。CCS概念•网络→错误检测和错误校正; •计算机系统组织→可靠性; •软件及其工程→编译器;操作系统;关键字卫星计算,容错,辐射硬化
在第 1 章中,我们看到开放量子系统可以与环境相互作用,并且这种耦合可以将纯态转变为混合态。此过程将对任何量子计算产生不利影响,因为它可以减轻或破坏干扰效应,而干扰效应对于区分量子计算机和传统计算机至关重要。克服这种影响的问题称为退相干问题。从历史上看,克服退相干的问题被认为是构建量子计算机的主要障碍。然而,人们发现,在适当的条件下,退相干问题是可以克服的。实现这一目标的主要思想是通过量子误差校正 (QEC) 理论。在本章中,我们将介绍如何通过 QEC 方法克服退相干问题。值得注意的是,本介绍的范围并不全面,并且仅关注 QEC 的基础知识,而没有参考第 5 章中介绍的容错量子计算的概念。量子误差校正应该被视为这个更大的容错量子计算理论中的一个(主要)工具。
连续变量簇状态与将量子比特编码为玻色子模式的 Gottesman-Kitaev-Preskill (GKP) 结合使用时,可实现基于容错测量的量子计算。对于四轨晶格宏节点簇状态,其构造由固定的低深度分束器网络定义,我们表明,Clifferd 门和 GKP 误差校正可以在单个传送步骤中同时实现。我们给出了实现 Clifferd 生成集的明确方法,并在簇状态和 GKP 资源有限压缩的情况下计算逻辑门错误率。我们发现,在 11.9–13.7 dB 的压缩下,可以实现与拓扑码阈值兼容的 10 − 2 – 10 − 3 的逻辑错误率。所提出的协议消除了先前方案中存在的噪声,并将容错所需的压缩置于当前最先进的光学实验范围内。最后,我们展示了如何直接在簇状态中产生可提取的 GKP 魔法状态。