制造了抽象的高密度聚乙烯(HDPE)基于基于三种不同类型的石墨烯纳米纤维素(GNP)的纳米复合材料(GNP),以研究GNP的尺寸效应,以横向大小和厚度对形态,热,电气和机械性质的侧向尺寸和厚度。结果表明,GNP的包含增强了基于HDPE的纳米复合材料的热,电和机械性能,而不论GNP大小如何。然而,使用较大的侧向大小的GNP实现了热导电和最低电渗透阈值的最显着增强。这可能归因于以下事实:较大的侧向尺寸的GNP在HDPE中表现出更好的分散体,并形成了在扫描电子显微镜(SEM)图像中易于观察到的诱导途径。我们的结果表明,与其厚度相比,GNP的横向大小是上述纳米复合材料的更调节因素。对于给定的侧向尺寸,较薄的GNP显示出明显更高的电导率,并且渗透阈值低于较厚的电导率。另一方面,就热导率而言,仅在某个填充浓度上方观察到了显着的增强。结果表明,与其他相比,由于分散度较差,横向尺寸较小且厚度较大的GNP会导致样品机械性能的增强。另外,GNP的尺寸对HDPE/GNP纳米复合材料的熔化和结晶特性没有相当大的影响。
35J20二阶椭圆方程的变异方法35J25二阶椭圆方程的边界价值问题35J60非线性椭圆方程35J50椭圆系统的变异方法35QXX expliatiation and Inteplation 49Q05最小值的数学物理和其他区域的偏差方程在优化49q20的几何措施理论环境中的正常术中的正常临界值53Z05差分几何形状到物理学58E15差异问题,涉及几种变体中极端问题的变化问题; Yang-Mills功能58E20谐波图等。81T13 YANG-MILLS和其他量规理论81T13 YANG-MILLS和其他量规理论
微电网具有越来越多的关注,因为它们可以促进可再生能源的整合。为了充分利用微电网,制定并解决了优化问题以确定其最佳计划(即尺寸和能源管理)。但是,这些问题很复杂且耗时解决。在本文中,我们关注基于弯曲器算法的时间分解,以减少计算时间,同时仍然获得最佳解决方案。时间分解将初始问题划分为较小的时间间隔的子问题。这项工作的第一个原始性是将这种时间分解应用于混合企业线性问题的方法的主张,以实现微电网的最佳计划。第二个独创性是研究以下相关参数对基于Benders算法的时间分解时间计算时间的影响:问题的分解周期,问题的性质,整体时间范围和CPU的数量。此外,与以前的文献相反,我们提出的方法表现出计算时间减少。对于经过考虑的案例研究,它们的最高为5.6倍。我们的结果还突出了分解周期的存在,该分解周期最大化了性能。此外,我们发现时间分解特别有效,对于较大的时间范围的混合构成线性问题,并且可以使用超过16个CPU。提出的通用方法和我们的结果对研究人员和旨在在缩短计算时间内找到其微电网的最佳尺寸和运行的微电网项目持有人可能非常有用。
在用于混合和/或虚拟现实的便携式应用中,高亮度微型播放的需求吸引了对基于Ingan/GAN的微型微型发光二极管(µLEDS)的重要研究浪。我们建议使用香料建模技术来描述和模拟µLED的电流行为。整个设备的子电路刻画将用于描述基于ABC模型的设备的电流 - 电压性能和光功率性能。我们建议一种创新的方法,即从模拟电流中立即得出载体浓度,以确定µLED量子效率。在第二步中,还将统计方法添加到香料模型中,以了解实验数据的差异。这种µLED香料建模方法对于允许设计可靠的像素驱动电路非常重要。
Cian Cummins,Alberto Alvarez-Fernandez,Ahmed Bentaleb,Georges Hadziioannou,Virginie Pon-Sinet等。Langmuir,2020,36(46),pp.13872-13880。10.1021/acs.langmuir.0c02261。hal-03033202
摘要 — 本研究旨在确定由风力发电厂、电解厂、压缩机、储罐和氢燃料燃气轮机发电厂组成的供电系统的规模,以提供低碳电力。该系统具有可调度供电系统的优势,是实现电网灵活性所必需的。对于这种电对电系统,规模确定的目标是找到系统所有组件的最小功能尺寸。规模确定是针对 2021 年德国的情况进行的。考虑了两种系统规划:一种是需求仅由燃气轮机满足,风力发电厂专用于绿色氢气生产;另一种是风力发电厂生产氢气并满足需求,而燃气轮机完成平衡。我们还评估了系统的资本和运营成本,以及其用水量和土地足迹。计算得出的规模结果表明,使用综合方法进行规划以利用风力发电厂和燃气轮机之间的协同作用不仅可以降低成本、节省空间和节约用水,还可以避免系统规模过大。
摘要融合沉积建模(FDM)是一种增材制造(AM),由于其在设计,有效使用材料和负担得起的成本方面,它引起了研究人员和行业的浓厚兴趣。在本文中,主要目的是研究FDM过程参数对挠曲性能的影响以及由聚对苯二甲酸乙二醇乙二醇(PETG)材料制成的最终部分的准确性,由于其强度和易用性,该材料广泛用于3D打印。采用了基于盒子– Behnken设计的响应表面方法(RSM)方法,其中包含三个关键过程参数:填充线距离,壁线计数和构建板温度。对数据的分析表明,所有三个参数都影响了印刷部分的固有特征,包括印刷部分的机械和尺寸特征。构建板温度被确定为最重要的参数,占印刷样品弯曲强度变化的53%,在样品的尺寸准确性方面偏离39.7%,如方差分析(ANOVA)所示。模型的预测值与相应的实验结果之间的比较表明,开发模型的适用性很高。在这项研究中观察到的最大百分比误差为3.4%,维度准确性为7.5%,建立了优化技术的功效。这些结果对于理解过程参数对材料响应的影响很有意义,并提供了一种系统的方法来开发具有改进的机械特性和几何维度的结构增强的PETG部分。
最大,最容易识别的是前fontanelle(AF),这是额叶和顶骨之间的菱形形开口。[7] AF相对于瓦尔瓦里亚生长,促进了更快的大脑生长。[2,4,8]对AF大小的临床检查是新生儿和儿科最佳中心的新生儿和婴儿全面检查的一部分。AF的大小可用于跟随儿童在生命的早期的发展和营养,因为它被认为是产前和产后时期颅增长和发育的良好指数。[2,3,5,9]头骨的平坦骨头是膜骨头,中心的骨化中心,并通过成骨细胞和整骨活性之间的微妙平衡不断地重塑。这些骨骼通过在产后和产后期间边缘的中央吸收和骨骼增添骨骼。除了Metopic缝合线以外,它们保持开放,直到脑生长在第2年结束时退出[10],就像缝合线的融合一样,垂直于该缝合线的生长受到限制。因此,Fontanelles的大小取决于神经生长,硬脑膜因子,缝合特征和成骨。[11,12]
摘要 - 由于表现不断提高和成本降低,Battery储能系统(BESS)越来越具竞争力。从技术角度来看,某些电池存储技术可能是成熟且可靠的,但预计会进一步降低成本,但电池系统的经济关注仍然是要克服的主要障碍,然后才能将BESS充分用作能源领域的主流存储解决方案。由于部署BES的投资成本很大,因此最关键的问题之一是最佳尺寸,以平衡使用BESS改善能源系统绩效和实现盈利投资之间的权衡取舍。确定特定应用程序的最佳BES大小是一项复杂的任务,因为它取决于应用程序本身,电池系统的技术特征和业务模型框架的许多因素。本文介绍了一种基于通用仿真的分析方法,该方法已开发出来,以确定BESS最佳尺寸,同时考虑到其生命周期的应用程序和存储性能。它的实现和相关的结果介绍了两个不同的BES用例:PV注入的平滑和峰值剃须应用和一个离网杂种微网案。为了更好地理解在BESS大小程序中要考虑的最有影响力的驱动因素,对这两个说明性案例进行了一些灵敏度分析。使用比较方案导致量化以下主题中几个因素的最佳尺寸结果的影响程度:控制策略,预测质量,由于老化而导致电池性能的退化,技术建模的精度。
尽管对铁电体的尺寸效应进行了广泛的研究,但是反铁电体的结构和特性在尺寸减小的情况下如何演变仍然难以捉摸。鉴于反铁电体在高能量密度存储应用方面具有巨大潜力,了解它们的尺寸效应将为优化小尺度器件性能提供关键信息。本文研究了无铅 NaNbO 3 膜中反铁电性的基本本征尺寸依赖性。通过广泛的实验和理论方法,探究了膜厚度减小后有趣的反铁电到铁电的转变。这种尺寸效应导致 40 nm 以下的铁电单相,以及在此临界厚度以上铁电和反铁电序共存的混合相状态。此外,结果表明反铁电和铁电序是电可切换的。第一性原理计算进一步表明,观察到的转变是由膜表面引起的结构扭曲驱动的。这项工作为反铁电体中内在尺寸驱动的缩放提供了直接的实验证据,并展示了利用尺寸效应通过膜平台驱动环境无铅氧化物中的突发特性的巨大潜力。