拓扑指数是预测不同药物的物理化学和生物学功能的关键工具。它们是从化学分子结构获得的数值。这些索引,尤其是基于学位的TI是评估化合物结构及其属性之间连接的有用工具。本研究解决了如何使用基于学位的拓扑指数来优化药物设计的研究问题。耐药性的出现和当前治疗的严重负面影响进一步强调了对艾滋病毒的更安全和更有效的艾滋病毒的需求。采用基于学位的图形不变性,该研究通过应用定量结构 - 特质关系(QSPR)技术来研究13种HIV药物,以将其分子结构与其物理特性相关联。根据特定参数,使用分析层次结构过程(AHP)对HIV药物进行排名。研究的结果消除了这些方法能够确定最有效的药物组合和设计的能力,从而为开发改善的HIV治疗提供了深刻的信息。
低碳农村旅游业发展对新兴经济体的环境治理提出了关键的挑战,但政策实施的多层次动态仍然没有得到充实的挑战。这项研究检查了中国对这一挑战的方法,采用了混合方法方法,包括对16个中央和559个省级政策文件的分析,五个省份的15个农村村庄(匈奴,广东,宗教,Zhejiang,shanxi和hainan)的案例研究,以及637家利益利益的调查。我们的发现揭示了一种复杂的政策格局,其特征是不断发展的国家框架,各种省级采用模式受到经济,环境和机构因素的影响,以及三种不同的地方实施途径:技术驱动,社区,基于社区和政策领导。我们揭示了利益相关者的看法和社会经济影响的显着差异,强调了自适应治理机制和当地情境因素在确定政策有效性中的关键作用。这项研究通过证明自上而下指令和自下而上创新之间的复杂相互作用在塑造可持续的旅游业成果中,为政策扩散和多层次治理理论做出了贡献。基于这些见解,我们提出了基于证据的政策建议,强调了灵活的,上下文敏感的方法和改善利益相关者的参与,以增强低碳农村旅游治理。这项研究为在中国和其他发展中国家致力于可持续的农村发展和环境保护的决策者和从业者提供了宝贵的指导。
越来越多的证据表明,精神共病背后存在层次化的精神病理学因素。然而,这些多层次因素的确切神经生物学特征仍然难以捉摸。在这项研究中,我们利用大脑行为预测框架和 10 年纵向成像遗传队列(IMAGEN,年龄 14、19 和 23 岁,N = 1,750),构建了外化和内化症状背后的两个神经因素,这些因素在六个临床和基于人群的数据集(ABCD、STRATIFY/ESTRA、ABIDE II、ADHD-200 和 XiNan,年龄从 10 岁到 36 岁,N = 3,765)中可重现。这两个神经因素表现出不同的神经配置:外化症状的冲动相关回路中存在超连接,而内化症状的目标导向回路中存在低连接。这两个因素在认知行为相关性、遗传基础和发展特征方面也有所不同。结合先前的研究,这些发现提出了从青春期前到成年期共病精神疾病的分层神经认知谱模型:一个一般神经精神病理学 (NP) 因素(表现为执行控制效率低下)和两个分层因素,分别针对外化(抑制控制不足)和内化(目标导向功能受损)症状。这些整体见解对于开发分层的精神障碍治疗干预措施至关重要。
持续的病理心肌肥大会导致心力衰竭(HF);一个重大的健康问题影响了全球大部分人口。在HF中,肽素II(UII)的循环水平有明显的升高,但目前尚不清楚这是否是肥大的结果,还是高水平的高水平有助于肥大的发展。这项研究的目的是研究UII及其受体UT在心脏肥大发展中的作用和所涉及的信号分子。室心肌细胞用200nm UII处理48小时,并通过长度/宽度(L/W)比的测量来定量肥大。UII导致L/W比的变化从4.53±0.10到3.99±0.06; (p <0.0001)48小时后。响应由UT-Antagonist SB657510(1μm)逆转。UT受体激活导致通过Western印迹测量的ERK1/2,P38和CAMKII信号传导途径的激活;这些参与肥大的诱导。JNK不参与。此外,ERK1/2,P38和CAMKII抑制剂完全阻断了UII诱导的肥大。肌质网(SR)Ca 2+渗出症在分离的心肌细胞中研究。SR Ca 2+渗出没有显着增加。我们的结果表明,MAPK和CAMKII信号通路的激活与对UII的肥厚反应有关。总的来说,我们的数据表明,增加的循环UII可能有助于左心室肥大的发展和对UII/UT受体系统的药物抑制作用,可能证明有益于减少心脏病中的不良重塑和减轻收缩功能障碍。
我们提出了一个协作智能系统的分层框架。该框架根据协作活动的性质和必须共享的信息来组织研究挑战,每个级别都建立在较低级别提供的功能之上。我们回顾了每个级别的研究范式,描述了基于工程的经典方法和基于机器学习的现代替代方案,并使用假设的个人服务机器人进行了示例说明。我们讨论了各个级别上出现的跨领域问题,重点关注沟通和共享理解的问题、解释的作用以及协作的社会性质。最后,我们总结了研究挑战,并讨论了通过与智能系统的协作来增强人类能力并赋予人类和社会权力的技术可能带来的经济和社会影响。
将每 10 万活产婴儿的孕产妇死亡率降低到 70 人以下是 2030 年可持续发展目标 (SDG 3) 的目标之一 [1]。为了实现这一数字,妇女应该清楚了解导致孕产妇死亡率高的直接和间接 ODS,并尽早寻求医疗保健提供者的治疗,特别是在包括埃塞俄比亚在内的发展中国家[2-4]。这些 ODS 大致可分为三类。手和脸肿胀、阴道出血、严重头痛、视力模糊、先兆子痫和子痫是妊娠期间最常见的症状。严重阴道出血、分娩时间超过 12 小时、高血压疾病和胎盘滞留是分娩期间的主要 ODS。发烧、恶臭的阴道分泌物和急性阴道出血是产后的主要 ODS [5]。此外,根据孕产妇死亡占比,还可分为直接和间接 ODS。直接 ODS 包括感染、出血、难产、不安全流产和妊娠期高血压疾病,占全球孕产妇死亡的近 80%,而间接 ODS 则包括贫血、肝炎、糖尿病、疟疾和因妊娠而加重的心血管疾病 [6,7]。世界卫生组织 (WHO) 2022 年报告指出,出血是全球孕产妇死亡的主要原因,约占所有死亡的 28%,其中直接产科并发症是孕产妇死亡的主要原因 [6,7]。此外,研究表明,非洲孕产妇死亡的两个主要原因是子痫和出血 [8,9]。但是,如果妇女意识到这些 ODS,并得到适当的识别、治疗和管理,许多并发症是可以避免的 [7]。但大多数女性,特别是欠发达国家的女性,对 ODS 了解不多[6,10-12]。三个关键延迟模型描述了许多低收入国家孕产妇在怀孕、分娩和产后阶段死亡的主要原因。这些包括延迟识别危及生命的 ODS 并做出就医决定、延迟去医院以及延迟在医院获得及时、充分和有效的护理[13-16]。由于对 ODS 缺乏了解,妇女延迟获得产科医疗服务,导致发展中国家孕产妇患病率和死亡率高[17,18]。
在初级保健中,触发工具已被用于评估和确定患者安全事件。使用触发工具可以帮助临床医生和患者在患者的病历中发现不良事件。由于缺乏对初级保健触发工具的过程开发的研究,因此本范围审查的目的是调查初级保健环境中的触发性开发和验证过程。使用乔安娜·布里格斯(Joanna Briggs)执行范围审查的方法来绘制范围审查方法来绘制已发表的文献。我们考虑了过去五年中仅以英语发表的研究,并包括定性和定量研究设计。最终评论包括五个文献。包括初级保健和组合初级护理研究,以在过程开发和触发工具的验证方面获得更多知识。触发工具开发过程始于明确定义触发器,然后将其编程为组合的计算机化算法。随后,医师和非医师专家都以两个步骤进行验证过程,以进行内容和并发有效性。最终算法的灵敏度,特异性和阳性预测值(PPV)对于确定每个触发的有效性至关重要。这项研究提供了开发触发工具的综合指南,强调通过彻底定义触发器的重要性,通过彻底的文献综述和双重验证过程。在跨初级保健和医院环境的触发工具的开发和验证方面存在相似之处,从而使Primary Care可以从医院环境中学习。
图1:作为桥梁体系结构的我们提出的潜在代码的插图。给出了高级任务描述和观察,一个大语言模型(LLM)生成了动作和令牌的文本描述。令牌的最后一层嵌入的功能是下游策略网络的高级潜在目标。我们的模块化层次结构方法协同LLM的高级推理与预先训练的策略的响应式低级控制,以解决单片LLM的直接低级动作输出的局限性。与使用LLM直接输出代理操作[1]的方法不同,我们的方法可以异步地运行LLM推理和动作策略执行循环,从而在与物理世界互动时立即反映了类似人类的任务执行,并且在考虑长期计划时会谨慎地进行低级反馈。在测试时,操作策略经常根据环境更改和最新的令牌的嵌入更新操作,而LLM更新则较不频繁,从而有效,现实世界中的推断。
多级分层分类(MLHC)解决了在复杂的多层类结构中对项目进行分类的挑战。但是,传统的MLHC分类通常依赖具有n个独立输出层的骨干模型,这些模型往往会忽略类之间的层次关系。这种疏忽可能导致违反潜在分类法的前提不一致。利用大型语言模型(LLMS),我们提出了新颖的分类学限制过渡性LLM-无知框架进行多模态分类。这种进步的基石是模型在层次级别上执行一致性的能力。我们对MEP-3M数据集的评估 - 与常规LLMS结构相比,具有各种层次级别的多模式电子商务产品数据集具有显着的性能。
Jan Dreyer, 1 , 12 Giulia Ricci, 1 , 12 Jeroen van den Berg, 1 , 2 , 12 Vivek Bhardwaj, 1 , 2 Janina Funk, 1 Claire Armstrong, 3 , 4 Vincent van Batenburg, 1 , 2 Chance Sine, 3 , Michael Van den Berg, 14 . skje B. Tjeerdsma, 5 Richard Marsman, 1 Imke K. Mandemaker, 1 Simone di Sanzo, 6 Juliette Costantini, 1 Stefano G. Manzo, 2 , 7 , 8 Alva Biran, 9 Claire Burny, 6 Marcel A.T.M.van Vugt,5 Moritz vo lker-Albert,6 Anja Groth,9,10,11 Sabrina L. Spencer,3,4 Alexander van Oudenaarden,1,2和Francesca Mattiroli 1,1,13, * 1 * 1 S 3美国科罗拉多大学博尔德大学生物化学系40303,美国4 Biofrontiers Institute,科罗拉多大学博尔德大学,BOLDER,BOLDER,CO 80303,美国5研究所,荷兰市CX Amsterdam 121,1066 CX Amsterdam 8米兰米兰大学生物科学系,2013年意大利9 Novo Novo Novo Novo Novo Novo nordist Foundation Foundation for for Copenhagen,University of Copenhagen,Copenhagen 2200丹麦哥本哈根13领导联系 *通信:f.mattiroli@hubrecht.eu https://doi.org/10.1016/j.molcel.2024.10.023