量子纠缠是现代物理学的核心特征之一,确定量子系统中何时存在纠缠的问题是其最活跃的研究领域之一 [1, 2]。该领域中特别令人感兴趣的是确定给定子空间是否纠缠的问题。也就是说,确定子空间中的每个纯态是否都是纠缠的(即不是乘积态)[3, 4]。在两个量子系统的二分设置中,证明子空间中纠缠的标准用途之一是,任何支持在纠缠子空间上的混合量子态必然是纠缠的 [5, 6],但近年来还出现了许多其他应用。例如,纠缠子空间可用于构造纠缠见证 [7, 8] 并执行量子纠错 [9, 10]。该问题及其稳健变体的进一步应用包括确定 QMA(2) 协议的性能、计算纠缠的几何测度以及确定平均场哈密顿量的基态能量等 [11]。(对于更多应用,参考文献 [11] 包含了量子信息和计算机科学中 21 个等效或密切相关的问题的汇编!)在三个或更多量子系统的多部分设置中,子空间的纠缠有不同的概念。完全纠缠子空间不包含任何乘积态 [6],而真正纠缠的子空间是不包含任何跨二分乘积态的子空间(真正纠缠的要求比完全纠缠更严格)[12, 13]。完全纠缠子空间可用于局部区分纯量子态 [14, 15],而真正的纠缠子空间已被证明可用于量子密码学 [16]。确定子空间是否纠缠是一个
主要关键词