他在 BITS Pilani 获得了工程学学士学位(荣誉学位),并曾在 CMC Delhi 担任软件工程师,负责铁路计算机化项目,后来加入 SCL 的 CMOS 部门。他曾在美国加利福尼亚州的罗克韦尔半导体公司工作,参与 R65 系列设备的设计。他曾在 CMOS 的不同领域工作过,在 CMOS 设计、设备测试/特性描述、ATE 上的测试程序开发、硅调试以及几个技术节点的工艺集成/移植方面拥有丰富的经验;从 5µm 到亚微米节点。他还在 AMS Austria 工作了十个月,负责在其代工厂移植 SCL 的 CMOS 工艺。目前,作为 SCL/ISRO 的集团负责人,他管理着四个关键部门:VLSI 设计、工艺开发、光电设备和 MEMS 设计。他在各种 ASIC 和产品的设计方面发挥了重要作用,例如电表芯片、单片电话、12 位 ADC、14 位 DAC、CMOS 成像传感器 CIS、信号处理器、SRAM、LVR、LDO、RAdHARD 设备等。他感兴趣的领域是低功耗 CMOS 设计、DSM 体制下的模拟设计、DSM 时代的工艺增强/优化。他发起了许多新的工艺开发模块,例如 HV、SOI、BiCMOS、带背面减薄的 CCD 工艺技术、用于光子学的 Si 上的 III-V 材料等以及用于相机应用的 APS、超低功耗电路(偏置为几 nA)、轨到轨 OTA、RHDB SRAM 等。
摘要 — 最近的芯片集成工艺使多个有源芯片能够在同一封装中进行 3D 堆叠,从而提供更高的逻辑密度、更低的功耗和显著的芯片间带宽。现场可编程门阵列 (FPGA) 可以从 3D 芯片集成中受益,方法是堆叠多个同质 FPGA 结构以增加逻辑容量,或与其他异构专用集成电路 (ASIC) 集成。这开启了无数的研究问题和相互关联的设计选择。然而,我们缺乏建模这些 3D 可重构设备并定量探索其巨大设计空间所需的工具。在这项工作中,我们增强了现有的 FPGA 架构探索工具并构建了新的工具来解决这一差距,重点关注电路级结构建模、3D 集成考虑、系统级架构和计算机辅助设计 (CAD) 工具。我们通过集成升级版的 COFFE 自动晶体管尺寸调整工具来扩展 RAD-Gen 框架,该工具支持 7 nm FinFET,并为较新的工艺技术提供更精确的金属感知面积模型。我们还在 RAD-Gen 中实现了新工具,用于对 3D 架构的芯片间连接和电源分配网络进行建模。此外,我们还推出了新版多功能布局布线 (VPR) 工具,该工具可以对 3D 设备进行建模,并对其架构描述语言和布局布线引擎进行了增强。最后,我们通过对同构和异构 3D 可重构设备进行建模和评估,展示了我们增强工具的功能。
微电子革命仍在继续。技术创新层出不穷,半导体器件、集成电路和系统的性能成本比不断提高。尽管这可能很有趣,但过去三十年的微电子历史对行业几乎没有直接好处。这本名为《先进 CMOS 工艺技术》的 VLSI 电子系列丛书提供了微电子领域一个高度相关的领域的当前快照。由于文中讨论的原因,CMOS(互补金属氧化物半导体)技术在现在和未来的电子系统中起着主导作用。在为本专著选择合适的材料时,我们指定了两个选择标准。首先,我们寻找对 CMOS 工艺技术的现在和未来发展水平至关重要的主题。其次,由于篇幅和时间限制,我们关注其他论坛中涉及最少的问题。除了介绍性评论和 CMOS 器件和电路考虑因素的背景外,我们将主题列表缩小到金属化、隔离技术、可靠性和产量。读者不应推断被省略的领域(包括光刻和蚀刻技术)排名较低。相反,这些主题在(例如)本 VLSI 电子学系列的早期卷中已经得到大量明确的审查。最后,我们指出,我们的目标是尽可能清楚地报告我们选择交流的 CMOS 工艺技术问题的现状,从而为全球微电子行业做出贡献。此外,我们试图尽可能准确地预测未来的发展。这种贡献是暂时的。我们希望业界能够通过创新、发明和托马斯·爱迪生那样的辛勤努力超越这本专著的技术内容。事实上,我们将本书献给工程师、科学家和技术经理,他们将使我们提出的许多技术问题变得过时。
在这项研究中,这项研究根据过程条件对熔体池形状变化特性进行了测试分析,以防止传感器在应用定向能源部门工艺技术作为生产嵌入式传感器金属结构的方法时,通过过程的高热能破裂。随着AI技术的发展,结构自我诊断的自我诊断的重要性正在增加,并且随着对结构和传感器融合措施的需求的增加,将传感器插入结构的研究正在扩大。如果将传感器和结构集成到一般制造方法中,则很难避免由过程热能造成的传感器损害。但是,如果您采用激光层压技术,则可以最大程度地减少融合能量以防止传感器破裂。的融合能。本研究比较了通过使用各种激光输出和射线低扫描速度组合的过程条件来比较熔体池组合的熔体池的宽度和深度。目标材料用于SUS316L,激光输出为900〜1,800W,扫描速度定义在800〜1,200mm/min的范围内。根据DIV的分析,随着能量密度的增加,熔体池的宽度增加,并且相同的能量密度证实,熔体池宽度随着产量的增加而增加。中产生的熔体池深度也与能量密度成比例增加,并在1,800W和800 mm/min的过程条件下显示最大深度为700μm。传感器盖的最小厚度,以防止传感器通过在熔体池上方制造。
摘要 — 3D 集成技术在半导体行业得到广泛应用,以抵消二维扩展的局限性和减速。高密度 3D 集成技术(例如间距小于 10 µ m 的面对面晶圆键合)可以实现使用所有 3 个维度设计 SoC 的新方法,例如将微处理器设计折叠到多个 3D 层上。但是,由于功率密度的普遍增加,重叠的热点在这种 3D 堆叠设计中可能是一个挑战。在这项工作中,我们对基于 7nm 工艺技术的先进、高性能、乱序微处理器的签核质量物理设计实现进行了彻底的热模拟研究。微处理器的物理设计被分区并以 2 层 3D 堆叠配置实现,其中逻辑块和内存实例位于不同的层(逻辑位于内存上的 3D)。热仿真模型已校准到采用相同 7nm 工艺技术制造的高性能、基于 CPU 的 2D SoC 芯片的温度测量数据。模拟并比较了不同工作负载条件下不同 3D 配置的热分布。我们发现,在不考虑热影响的情况下以 3D 方式堆叠微处理器设计会导致在最坏情况下的功率指示性工作负载下,最高芯片温度比 2D 芯片高出 12°C。这种温度升高会减少在需要节流之前运行高功率工作负载的时间。但是,逻辑在内存上分区的 3D CPU 实现可以将这种温度升高降低一半,这使得 3D 设计的温度仅比 2D 基线高 6°C。我们得出结论,使用热感知设计分区和改进的冷却技术可以克服与 3D 堆叠相关的热挑战。索引术语 —3D 堆叠、面对面、热
增材制造 (AM) 是一种使用多种方法最终应用材料层并制造产品的技术 (Ford & Despeisse, 2016; Ford, Mortara & Minshall, 2016)。尽管近年来增材制造技术得到了扩展,但其在制造业中的应用已有几十年 (Ford, Mortara, et al., 2016)。自 20 世纪 80 年代末以来,增材制造已从简单的产品设计(专注于原型设计和定制)发展到如今收入达数十亿美元并大规模生产消费品和工业产品 (Cotteleer, 2014)。预测显示,到 2020 年,增材制造市场将接近 100 亿美元,其中汽车、航空航天和医疗行业将处于领先地位 (Cotteleer, 2014)。目前,制造商可以使用多种增材制造技术,尽管这些技术的最终产品具有类似的分层结构,但工艺却大不相同。国际标准化组织 (ISO)/美国材料与试验协会 (ASTM) 标准 52900:2015 (ASTM F2793) 将 AM 工艺分为七类:粘合剂喷射、定向能量沉积、材料挤出、材料喷射、粉末床熔合(包括几种烧结方法)、板材层压和桶光聚合(表 1,第 36 页)。不仅机器和工艺技术存在很大差异,材料机会也存在很大差异。常用的原材料包括各种塑料和金属,但使用活组织、玻璃和复合材料的新发展正在进入 AM 世界(Cotteleer,2014 年)。与 AM 相比,更常见的是减材制造,它只是涉及从更大的供应中去除材料以生产商品(Ford 和 Despeisse,2016 年)。典型的减材制造涉及使用车床、计算机数控 (CNC) 机床和钻头或锯子根据规格去除材料 (Langnau, 2011)。减材制造的历史比 AM 还要悠久
瑞士伊韦尔东莱班,2023 年 10 月 19 日——随着人们对 PFAS(一种广泛用于生产锂离子电池的化学品)影响的担忧日益加剧,欧洲正在制定限制其使用的计划。由于电池行业的许多供应商将受到该计划的严重影响,Leclanché 已为这些新限制做好了准备,该公司已在其电池生产中使用水基粘合剂工艺超过 13 年(图片可在此处查看)。PFAS 代表全氟和多氟烷基物质,由多种人造化学品组合而成,自 1950 年代以来,这些化学品已被广泛用于各种工业和消费产品中。然而,自 21 世纪初以来,由于 PFAS 在环境中的长期存在以及对人类健康的潜在不利影响,人们对 PFAS 的担忧日益增加。接触 PFAS 与一系列健康问题有关,包括癌症、免疫系统功能障碍、生殖健康和发育障碍。因此,正在进行重大转变以消除它们的使用。不含 PFAS 或有毒溶剂的水基制造工艺 13 年来,Leclanché 一直是全球锂离子电池电极低成本绿色制造方法的先驱,在混合和涂覆工艺中使用不同的水基粘合剂溶液。水基粘合剂工艺技术有助于消除 PFAS 粘合剂的使用,避免对剧毒有机溶剂的依赖。该技术使公司不再使用 NMP 等有机溶剂,而是完全用水代替。这种选择不仅消除了环境风险,而且还通过大幅降低健康危害确保了参与生产过程的员工的安全。此外,该方法不需要溶剂回收系统,排放仅限于无需进一步处理即可排放到大气中的蒸汽。
功能蛋白与微透明剂的精确和高分辨率耦合对于制造微型生物电子设备至关重要。此外,微电极的电化学对电化学分析和传感器技术产生了重大影响,因为微电极的尺寸较小会影响分析物的径向扩散通量,从而提供了增强的质量传输和电极动力学。然而,与这种微电子相关的工艺技术与通常使用的召集生物结合技术之间存在了巨大的技术差距。在这里,我们使用溶剂辅助的蛋白质 - 麦克塞尔吸附印刷(GPS)进行了高分辨率和快速的几何蛋白自我图案(GPS)方法,以将夫作生物分子送到微电源上,以最小特征大小为5μm,并且打印时间约为一分钟。GPS方法用于微观的多种生物分子,包括酶,抗体和抗生物素生物素化的蛋白质,可提供良好的几何比对并保留生物学功能。我们进一步证明,用于葡萄糖检测的酶偶联的微电极表现出良好的电化学性能,从GPS方法中受益,可以最大程度地提高生物接口处有效的信号转导。这些微电极阵列保持了快速收敛分析物扩散,显示典型的稳态I - V特性,快速响应时间,良好的线性灵敏度(0.103 Na mm-2 mm-2 mm-1,r 2 = 0.995)和超宽线性动态范围(2 - 100 mm)。我们的发现为生物分子与微电体阵列的精确耦合提供了一种新的技术解决方案,对诊断,生物燃料细胞和生物电机设备的规模和生产具有重要意义,这些设备无法经济地实现其他现有技术。
Wittmann Group Wittmann Group是全球领先的注射成型制造商,机器人和辅助设备,用于处理各种可增塑材料 - 包括塑料和非塑料。该集团的总部设在奥地利维也纳,由两个主要部门组成:Wittmann Battenfeld和Wittmann。遵循环境保护原则,资源和循环经济的保护,Wittmann集团从事最先进的工艺技术,以最大程度地进行注射霉菌的能源效率,以及处理具有较高含量的可回收和可再生原材料的标准材料和材料。Wittmann组的产品被签署为水平和垂直整合到智能工厂中,并且可以相互联系以形成智能生产单元。该集团的公司在六个国家共同运营十个生产工厂,在全球所有主要的工业市场中都存在36个不同地点的其他销售公司。Wittmann Battenfeld追求作为注塑机器的制造商和模块化设计中综合现代机器技术的供应商的持续增强其市场位置。Wittmann的产品范围包括机器人和自动化系统,材料处理系统,干衣机,压力指标和体积搅拌器,颗粒机,温度控制器和冷水机。联系人:Wittmann Technology GmbH Lichtblaustrasse 10 1220 Vienna Austria Tel。:+43 1 250 39-0 info.at@wittmann-group.com Wittmann Battenfeld Deutschland Gmbh AM Tower 2 90475纽伦堡德国电话。Wittmann Group enbles的伞下各个区域的组合完美整合 - 为了使注入成型处理器的优势,对加工机,自动化和辅助的无缝互锁的需求不断增长。:+49 9128 7099-0 info.de@wittmann-group.com www.wittmann-group.com
半导体行业协会 (SIA) 1 很高兴有机会向总务管理局 (GSA) 提交这些评论,以响应其关于产品中 PFAS 的信息请求 (RFI)。2 SIA 支持联邦政府减少采购含 PFAS 产品的目标,但出于以下原因,我们认为半导体产品不应受到因此 RFI 而产生的任何采购限制,含有半导体元件的产品也不应仅仅因为其包含半导体作为其支持技术而受到限制。在 SIA 的支持下,半导体 PFAS 联盟发表了技术论文,记录了该行业在各种应用中对 PFAS 的使用,包括有关特定 PFAS 在我们的制造过程中的独特功能特性的信息、缺乏非 PFAS 替代品来满足性能要求,以及识别和采用潜在替代化学品所需的技术障碍和较长的交货时间(通常为 5-25 年或更长时间)。每篇技术论文都可以在 https://www.semiconductors.org/pfas/ 下载,我们将这些论文通过引用纳入这些评论中。3这些论文为我们的评论提供了技术基础,我们敦促 GSA 在未来制定规则时考虑为半导体制造业及其价值链提供便利。如 RFI 中所述,GSA 采购政策联邦咨询委员会 (GAP FAC) 建议 GSA 通过政府采购减少 PFAS,特别考虑其他州和联邦计划已经确定的产品类别:家具、地毯、地毯、窗帘、炊具、食品服务用具、食品包装材料、餐具、餐具、油漆、清洁产品、防污防水处理、地板和地板护理产品 SIA 向 GSA 建议半导体产品不应受到任何此类采购限制,含有半导体元件的产品也不应仅仅因为它包含半导体作为其支持技术而受到限制。正如半导体 PFAS 联盟发表的论文所记录的那样,鉴于目前的行业实践和工艺技术,在不使用 PFAS 的情况下制造半导体在技术上是不可行的。半导体存在于无数对美国政府至关重要的产品中