呼吸道疾病患者将来可能会收到短信,以提醒他们空气质量差的时期,例如在阴霾或其他极端天气状况下,可能会引发过敏性反应或呼吸攻击。随着气候变化的影响,这些文本消息将是基于天气转变的全国性哮喘和哮喘和年龄阻塞性肺疾病(COPD)的全国性前铸造工具的一部分,该工具可能会触发此类患者的反应。“使用工具和警报系统,患者及其护理人员可以采取必要的主动措施来减少暴露,从而降低不必要的医院利用,”坦Tan Tock Seng医院的呼吸和重症监护医学高级研究员John Abisheganaden说。这样的系统是由Nanyang Technological University的Lee Kong Chian医学院(LKCMedicine)的研究中心领导的有关呼吸健康新研究计划中正在研究的五个领域之一。该计划 - 由学术呼吸道肺部疾病率领(TA-
相关图说明了基因表达,SCS电流(MA)和行为评分(BSPB)的百分比之间的关系。a:sham,b:no-scs(sni),C:双相对称SCS,D:单相阴性SCS,E:单相阳极SCS,F:非对称性双相SCS 1:2,G:不对称的双偶联1:0.5。蓝点代表正相关,红点代表负相关。点的大小和黑暗与Pearson相关系数的值成正比
集中式差分隐私已成功应用于量子计算和信息处理,以保护隐私并避免相邻量子态之间连接中的泄漏。因此,量子局部差分隐私 (QLDP) 已被新提出以保护量子数据隐私,类似于所有状态都被视为相邻状态的经典场景。然而,QLDP 框架的探索仍处于早期阶段,主要是概念性的,这对其在保护量子态隐私方面的实际实施提出了挑战。本文对 QLDP 进行了全面的算法探索,以建立一个实用且可行的 QLDP 框架来保护量子态隐私。QLDP 使用参数 ε 来管理隐私泄漏并确保单个量子态的隐私。对于任何量子机制,QLDP 值 ε 的优化(表示为 ε ∗ )都是一个优化问题。结果表明,量子噪声的引入可以提供与经典场景类似的隐私保护,量子去极化噪声被确定为 QLDP 框架内的最佳单元私有化机制。单元机制代表了一组多样化的量子机制,涵盖了经常使用的量子噪声类型。量子去极化噪声优化了保真度和迹线距离效用,这是量子计算和信息领域的关键指标,可以看作是经典随机响应方法的量子对应物。此外,提出了一个组合定理,用于将 QLDP 框架应用于分布式(空间分离)量子系统,确保有效性(QLDP 值的加性),而不管状态的独立性、经典相关性或纠缠(量子相关性)。该研究进一步通过分析和数值实验方法探讨了不同量子噪声机制(包括单元和非单元量子噪声机制)之间效用和隐私之间的权衡。同时,这突出了 QLDP 框架中量子去极化噪声的优化。
直接测量(电流和电压为0.2级)的高精度范围较大的电流输入允许将同一设备连接到1 a和5 a ct次级通过前USB连接您,您可以访问设备以访问设备以检索外部CID,加载外部CID,加载防火墙配置或更新设备固定设备固定协议,pt communcotions prody pts vers ints ints int concommance IRIG-B输入或PPS输入,PACFACTORY或显示用于监视和设置的Web服务器,无需其他软件网络安全功能:SFTP,HTTP,防火墙,审核日志,访问,RBAC,LDAP,会话管理...按IEC 61869-9(NCIT)和IEC 611850-9-2LE(NCIT)和SAME
模拟对真实性增强学习(RL)面临着核对模拟和现实世界中的差异的关键挑战,这可能会严重降级剂。一种有希望的方法涉及学习校正以代表残留误差函数的模拟器正向动力学,但是对于高维状态(例如图像),此操作是不切实际的。为了克服这一点,我们提出了Redraw,这是一种潜在的自回归世界模型,在模拟中鉴定在模拟中,并通过剩余的潜在动力学而不是明确观察到的状态对目标环境进行了验证。使用此改编的世界模型,Redraw使RL代理可以通过校正动力学下的想象的推出来优化RL代理,然后在现实世界中部署。在多个基于视觉的Mujoco域和一个物理机器人视线跟踪任务中,重新绘制有效地对动态变化,并避免在传统转移方法失败的低数据方案中过度拟合。
在高温下表现出结构稳定性的难治性金属纳米结构引起了人们对新兴应用的巨大兴趣,例如热质量,热伏耐托(TPV),太阳能热,热电,热电,,太阳能电气,太阳能型生成应用。[1-19]然而,尽管散装金属的熔点熔点高得多,但这些金属制成的纳米结构在高温下比其散装柜台更容易受到形态变化的影响。这主要是由于较大的表面量比导致纳米结构的表面能增加[20],从而驱动了与环境气体和质量扩散的氧化还原反应,从而导致结构衰减。这些纳米结构的固有的热实例阻碍了其在高于1200°C的温度下的靶向应用[21–25]此外,高温等离子/光子应用所需的材料是高度挑战性的。在高温下,光谱选择性和结构稳定性的结合仅在一小部分可用的材料选择中。
1 https://www.atmarkit.co.jp/fwcr/rensai/usability06/01.html 2 ISO 9241-110(2006)“人体工程学--人机交互--对话原则”https://kikakurui.com/z8/Z8520-2008-01.html “对话”:人与交互系统为实现某一目标而进行的互动(用户输入信息的一系列动作以及系统的响应)。 “交互式系统”:硬件和软件的组合,用于接收来自用户的信息输入并将输出传达给用户,以提高用户执行任务的能力。 3 Ben Shneiderman (1995) 设计用户界面:有效的人机交互策略 https://uxmilk.jp/64295 Kenichi Okada、Shogo Nishida、Hideaki Kuzuoka、Mie Nakatani、Hidekazu Shiozawa、IT Text 人机交互(修订第 2 版)(2016 年)(参考网站) https://www.atmarkit.co.jp/fwcr/rensai/usability06/01.html 4 ISO 9241-110 (2006) 人体工程学 - 人机交互 - 对话原则 https://kikakurui.com/z8/Z8520-2008-01.html “对话原则”:1)适合工作,2)自我描述,3)符合用户期望, ④ 易于学习, ⑤ 可控制性, ⑥ 对错误的容忍度, ⑦ 易于个性化 5 ISO 9241-210:2019 “人体工程学 - 人机交互 - 第210部分:以人为本的交互系统设计” https://webdesk.jsa.or.jp/books/W11M0090/?bunsyo_id=ISO%209241-210:2019 https://webdesk.jsa.or.jp/books/W11M0090/?bunsyo_id=JIS%20Z%208530:2021 具体的设计原则包括: ①“基于对用户、任务和环境的清晰理解进行设计”, ②“用户参与整个设计和开发过程”, ③“基于用户视角的评估来指导和改进设计”, ④它规定:5)“迭代流程”,6)“设计时要考虑用户体验”,7)“设计团队中要吸纳具有不同专业技能和观点的人员”。
SiCnifikant 项目研究并展示了 SiC 基半导体器件 (SiC-MOSFET) 在高达 250 kW 的驱动逆变器中的优势,满足了汽车的特殊要求。特别是,新型功率模块的构建和电机的集成旨在展示 SiC 在实现高开关速度、提高功率密度和效率方面的最佳使用。为了达到高达 75 kW/升的功率密度,在最大电流下将逆变器中的功率损耗降低 50% 并提高整个系统的可靠性,该项目从半导体芯片、模拟到组件原型设计(用于最终评估)等各个层面开展研究。该项目采用整体方法来满足系统设定的目标。从高档车辆开始,电动动力系统的最重要要求已定义如表 1 所示。
• 此优惠适用于已加入加拿大航空商务计划的加拿大和美国注册公司。• 适用于以下目的地的新合格航班预订:——从 YVR、YYC、YEG 或 YWG 出发或返回的所有美国航班。 • 优惠有效期为 2023 年 2 月 15 日美国东部标准时间 00:01 至 2023 年 3 月 1 日美国东部标准时间 11:59(“优惠期”)。 • 优惠:在优惠期内预订符合条件的航班,即可享受经济舱(经济舱基本票价除外)、高级经济舱和商务舱无折扣加拿大航空公布的基本票价高达 10% 的折扣,这些票价构成适用航空运输费用的一部分。 • “符合条件的航班预订”是指在加拿大航空商务网站或通过加拿大航空商务专用支持台预订的符合条件的定期航班的符合条件的票价。 • “符合条件的票价”是指:标准票价、经济舱灵活票价、舒适票价、经济舱纬度票价、高级经济舱最低票价、高级经济舱灵活票价、商务舱最低票价和商务舱灵活票价。不适用于经济舱基本票价。 • “符合条件的定期航班”是指加拿大航空运营的任何航班(包括以加拿大航空 Express® 名义运营的航班和由加拿大航空 Rouge® 运营的航班) YVR、YYC、YEG 或 YWG 和美国 • 折扣包含在显示的基本票价中,不适用于附加费(包含在航空运输费中)、税金、费用和收费。附加费、税金、费用和收费全额适用于所有预订,必须由旅客支付,包括占座的儿童和婴儿。有关我们票价的更多信息,请访问:https://www.aircanada.com/en-ca/about-our-fares。 • 旅行必须在以下期间内进行:2023 年 2 月 15 日至 2023 年 6 月 30 日(“旅行期”)。 • 此优惠不适用于代码共享和联运航班。 • 不适用于九 (9) 位以上客人的团体预订。 • 为清楚起见,航班套票购买和航班套票积分预订不包含在此促销优惠中,不被视为符合条件的航班预订。 • 不能与任何其他优惠、折扣或促销同时使用。 • 此优惠不可转让,不可兑换现金。• 视预订时的情况而定。• 条款和条件如有变更,恕不另行通知。• 如果此优惠因任何原因未能按计划进行,包括计算机病毒感染、漏洞、篡改、未经授权的干预、欺诈、技术故障、流行病或加拿大航空无法合理控制的任何其他原因,从而破坏或影响此优惠的管理、安全或正常实施,加拿大航空保留自行决定终止或暂停全部或部分优惠或以任何方式修改此优惠的权利,无需事先通知。加拿大航空还保留自行决定取消任何公司参与此优惠的资格以及禁止该公司参与任何未来优惠的权利,如果加拿大航空发现或认为该公司篡改了此优惠的流程或运作。 • 健康和安全协议、政府建议和地区旅行限制因酒店、船舶和目的地而异,可能会影响可用性,并可能随时更改,恕不另行通知。由于卫生协议不断演变,图像和消息可能无法准确反映机上和目的地的体验、产品、特色或行程。
摘要 —nnUNet 是一个完全自动化且可通用的框架,它可以自动配置应用于分割任务的完整训练管道,同时考虑数据集属性和硬件约束。它利用了一种基本的 UNet 类型架构,该架构在拓扑方面是自配置的。在这项工作中,我们建议通过集成更高级的 UNet 变体(例如残差、密集和初始块)的机制来扩展 nnUNet,从而产生三种新的 nnUNet 变体,即残差-nnUNet、密集-nnUNet 和初始-nnUNet。我们已经在由 20 个目标解剖结构组成的八个数据集上评估了分割性能。我们的结果表明,改变网络架构可能会提高性能,但提高的程度和最佳选择的 nnUNet 变体取决于数据集。索引词 —nnUnet、生物医学图像分割、残差网络、密集网络、初始网络。