集中式差分隐私已成功应用于量子计算和信息处理,以保护隐私并避免相邻量子态之间连接中的泄漏。因此,量子局部差分隐私 (QLDP) 已被新提出以保护量子数据隐私,类似于所有状态都被视为相邻状态的经典场景。然而,QLDP 框架的探索仍处于早期阶段,主要是概念性的,这对其在保护量子态隐私方面的实际实施提出了挑战。本文对 QLDP 进行了全面的算法探索,以建立一个实用且可行的 QLDP 框架来保护量子态隐私。QLDP 使用参数 ε 来管理隐私泄漏并确保单个量子态的隐私。对于任何量子机制,QLDP 值 ε 的优化(表示为 ε ∗ )都是一个优化问题。结果表明,量子噪声的引入可以提供与经典场景类似的隐私保护,量子去极化噪声被确定为 QLDP 框架内的最佳单元私有化机制。单元机制代表了一组多样化的量子机制,涵盖了经常使用的量子噪声类型。量子去极化噪声优化了保真度和迹线距离效用,这是量子计算和信息领域的关键指标,可以看作是经典随机响应方法的量子对应物。此外,提出了一个组合定理,用于将 QLDP 框架应用于分布式(空间分离)量子系统,确保有效性(QLDP 值的加性),而不管状态的独立性、经典相关性或纠缠(量子相关性)。该研究进一步通过分析和数值实验方法探讨了不同量子噪声机制(包括单元和非单元量子噪声机制)之间效用和隐私之间的权衡。同时,这突出了 QLDP 框架中量子去极化噪声的优化。
主要关键词