b'B'The分数量子厅(FQH)状态是物质拓扑阶段的一些最佳研究的例子。它们的特征是各种拓扑量,例如准粒子电荷,霍尔电导,霍尔的粘度和边缘理论的手性中心电荷,这从根本上是由电子之间的非平凡相关性引起的。在这些状态下相关性的一种特别用途是\ xe2 \ x80 \ x9cguiding Center \ xe2 \ x80 \ x80 \ x9d静态结构因子\ xc2 \ xaf s(k),在长波长的情况下,在平移和In-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-nimememementscements中是四分之一的Quartic [k)。FQH接地的一个基本特征是,确定此四分之一术语的第四个等级张量满足所谓的\ xe2 \ x80 \ x9Chaldane绑定\ Xe2 \ x80 \ x80 \ x9d [2,3],较低的结合在长波长度的强度下,构成了hall [4 hall sects of Hall ted the the Hall [4 hall [4 hall]的强度。在旋转不变的情况下,当引导中心静态结构因子和霍尔粘度张量的四分之一项都由每个pa-rameter确定时,界限可以表示为两者之间的简单标量不平等。在物理层面上,可以理解为将QH状态与拓扑琐碎的产物状态区分开的相关性最小的存在,即,前者不能绝热地变形到后者。在FQH上进行了许多工作,涉及一类旋转不变的模型波函数(Laughlin [6],Moore-Read [7],Read-Rezayi [8]),与欧几里得的保形场理论有关,并使Haldane结合饱和[9,10]。这些模型状态是属于某些非常特殊模型的汉密尔tonians的最高密度状态(零能量特征态),并且在理解FQHE方面发挥了关键作用。他们非常特殊的功能之一是,它们是\ xe2 \ x80 \ x9cmaxmaximally手性\ xe2 \ x80 \ x9d,因为它们在圆柱形几何形状中仅包含一个与半融合状态相对于一个cut的圆柱状态的贡献。这是\ xe2 \ x80 \ x9cmaximal手性\ xe2 \ x80 \ x9d的非常强烈的条件:最大性手性的较弱版本是,纠缠谱的低较低部分(或同等地,拓扑模式)仅具有一种chirality的贡献。这个较弱的版本通常会被汉密尔顿人的基础状态所满足,而汉密尔顿人的基础状态却远离模型。在本文中,我们解决了一个问题 - 饱和hal -dane结合需要什么条件?我们在附录B中显示,连续旋转不变性是必需的。之所以如此,是因为角动量的波动有助于O(K \ Xe2 \ X84 \ X93)4的静态结构因子4,但对HALL粘度张量不足。对于旋转不变的系统,先前已显示[11 \ xe2 \ x80 \ x93 13],即\ xce \ xbd \ xbd \ xe2 \ x88 \ x92 = p /(2 np \ xe2 \ xe2 \ x88 \ x92 1)jain状态[14]不满意,不满意n> 1,不满足n> 1,不满意 任何一个。这些FQH状态包含旋转不变的基态上方的Spin-2重力激发的两种手势。特别是一些研究支持了后者[9]。这会导致长波长的静态结构因子的相关性比霍尔粘度的大小所需的更大的相关性。但是,尚不清楚是否需要强大的最大性手性或较弱的版本足以使各向同性FQH状态的结合饱和。我们以数值调查了这个问题,并提供了明确的证据,表明弱的最大手性不足。因此,我们期望只有理想的保形块波形饱和haldane结合。我们使用旋转不变的二维Hamilto-Nians在\ xce \ xbd = 1 / 3,1 / 5和2/5的FQH状态的长波长极限中计算静态结构因子。为此,我们在圆周的无限缸[15]上使用密度矩阵重新归一化组,并通过考虑大的l y /\ xe2 \ x84 \ x93来接近2D-LIMIT。我们计算O(K \ Xe2 \ X84 \ X93)的系数\ XC2 \ Xaf S 4)4项在指南中心静态结构因子的长波长膨胀中,并表明它比Haldane绑定的Haldane by by for Haldane by to haldane by to for for for Haldane to for Haldane to for Haldane to for for for f q QH的Haldane Hamiltonians的FQH地面。我们通过分析围绕模型'
对参数化量子电路(PQC)的成本景观知之甚少。然而,PQC在量子神经网络和变异量算法中都采用,这可能允许接近量子的优势。此类应用需要良好的优化器来培训PQC。重点的工作重点是专门针对PQC量身定制的量子意见的操作器。但是,对成本景观的无知可能会阻碍这种优化者的进步。在这项工作中,我们在分析中证明了PQC的两个结果:(1)我们在PQC中找到了指数较大的对称性,在成本景观中产生了最小值的指数较大的变性。另外,可以将其作为相关超级参数空间体积的指数减少。(2)我们研究了噪声下对称性的弹性,并表明虽然在噪声下是保守的,但非积极通道可以打破这些对称性并提高最小值的脱位,从而导致多个新的局部最小值。基于这些结果,我们引入了一种称为基于对称的最小值(SYMH)的优化方法,该方法利用了PQC中的基础对称性。我们的数值模拟表明,SYMH在存在与当前硬件相当的级别的情况下提高了整体优化器性能。总的来说,这项工作从局部门传输中得出了大规模电路对称性,并使用它们来构建噪声知识优化方法。
摘要 分析了宇宙弦时空中两加速原子与无质量标量场相互作用的纠缠行为,计算了不同时空拓扑结构下的不同关联函数,发现纠缠行为由真空涨落、两原子距离、加速度和非平凡时空拓扑决定,结果表明较大的两原子距离和加速度对量子纠缠有负向影响。弦的存在对原子-场相互作用体系和纠缠行为有重大影响,当赤角参数ν = 1,原子距离弦较远时,纠缠行为与Minkowski时空相同。对宇宙弦时空中纠缠行为的分析,从原理上有利于认识宇宙弦时空的拓扑结构与性质,有助于区分宇宙弦时空与Minkowski时空。此外,我们还讨论了宇宙弦时空中的Unruh热效应。