冷泉港实验室出版社 2025 年 2 月 18 日 - 由 rnajournal.cshlp.org 下载自
随着合成生物学研究的规模越来越大,在活细胞中设计预定义功能需要越来越精确的工具。此外,遗传构建体表型性能的表征需要细致的测量和广泛的数据采集,以便在设计-构建-测试生命周期中为数学模型提供信息并匹配预测。在这里,我们开发了一种简化高通量转座子插入测序 (TnSeq) 的遗传工具:携带 Himar1 Mariner 转座酶系统的 pBLAM1-x 质粒载体。这些质粒源自 mini-Tn5 转座子载体 pBAMD1- 2,并按照标准欧洲载体结构 (SEVA) 格式的模块化标准构建。为了展示它们的功能,我们分析了 60 个土壤细菌 Pseudomonas putida KT2440 克隆的测序结果。新的 pBLAM1-x 工具已经包含在最新的 SEVA 数据库版本中,我们在这里使用实验室自动化工作流程描述了它的性能。
建立人类疾病的非人灵长类动物模型对于开发治疗策略尤其是神经退行性疾病的治疗策略非常重要。普通狨猴作为一种新的实验动物模型引起了人们的关注,许多转基因狨猴都是通过慢病毒载体介导的转基因产生的。然而,慢病毒载体在转基因应用中的长度限制为 8 kb 以下。因此,本研究旨在优化 piggyBac 转座子介导的基因转移方法,其中将长度超过 8 kb 的转基因注射到狨猴胚胎的卵周隙中,然后进行电穿孔。我们构建了一个携带阿尔茨海默病基因的长 piggyBac 载体。使用小鼠胚胎检查了 piggyBac 转基因载体与 piggyBac 转座酶 mRNA 的最佳重量比。在注射 1000 ng 转基因和转座酶 mRNA 的胚胎中,70.7% 的胚胎干细胞确认转基因整合到基因组中。在这些条件下,将长转基因引入狨猴胚胎。转基因引入处理后,所有胚胎均存活,70% 的狨猴胚胎中检测到了转基因。本研究开发的转座子介导的基因转移方法可应用于非人类灵长类动物以及大型动物的遗传修饰。
自从 Barbara McClintock 博士发现第一个转座子以来,转座因子 (TE) 的普遍性和多样性逐渐被人们认识到。作为基本的遗传成分,TE 不仅通过贡献功能序列(例如,调控元件或 McClintock 博士所说的“控制者”)而且通过改组基因组序列来推动生物体的进化。在后一种方面,TE 介导的基因复制促进了新基因的产生并引起了广泛的兴趣。为了顺应这一领域的发展,我们在此尝试通过关注不同类型的 TE 产生的复制中出现的共同规则来提供 TE 介导的复制的概述。具体而言,尽管不同 TE 的转座机制差异很大,但我们发现各种 TE 介导的复制机制有三个共同特点,包括末端绕行、模板转换和复发性转座。这三个特征导致一个共同的功能结果,即 TE 介导的重复倾向于发生外显子改组和新功能化。因此,突变机制的内在特性限制了这些重复的进化轨迹。我们最后讨论了该领域的未来,包括深入描述 TE 介导的重复的复制机制和功能。版权所有 © 2023,作者。中国科学院遗传与发育生物学研究所和中国遗传学会。由 Elsevier Limited 和科学出版社出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
核糖体 DNA (rDNA) 基因座含有数百个串联重复的核糖体 RNA 基因拷贝,这些基因是维持细胞生存所必需的。这种重复性使其极易因 rDNA 拷贝之间的染色单体内重组而导致拷贝数 (CN) 丢失,从而威胁到 rDNA 的多代维持。如何抵消这种威胁以避免谱系灭绝仍不清楚。在这里,我们表明 rDNA 特异性逆转录转座子 R2 对于恢复性 rDNA CN 扩增以维持果蝇雄性生殖系中的 rDNA 基因座至关重要。R2 的消耗导致 rDNA CN 维持缺陷,导致繁殖力在几代内下降并最终灭绝。我们发现,R2 核酸内切酶造成的双链 DNA 断裂(R2 的 rDNA 特异性逆转座的一个特征)会启动 rDNA CN 恢复过程,该过程依赖于 rDNA 拷贝处 DNA 断裂的同源性依赖性修复。这项研究表明,活性逆转座子为其宿主提供了必不可少的功能,这与转座因子完全自私的名声相反。这些发现表明,有利于宿主适应性可能是转座因子抵消其对宿主威胁的有效选择优势,这可能有助于逆转座子在整个分类群中广泛成功。
共轭(可自以为是),因为它们为自己的共轭转移和动员基因(TRA,TRB,VIR,PIL,PIL,FIN)编码,因为它们缺乏
3美国华盛顿州西雅图市医学院基因组科学系4表观遗传学和染色质动力学,实验医学科学系,Wallenberg Neuroscience Center和Lund Stem Cell Center,BMC B11,Lund University,Lund University,221 84 Lund,Sweden,瑞典。5 cambridge大学医院NHS基金会信托基金会临床神经科学系,剑桥大学6临床神经科学系和惠康 - 剑桥干细胞研究所,剑桥大学22184,伦敦,瑞典8号临床科学系Lund,伦敦大学病理科,瑞典9霍华德·休斯医学院,华盛顿大学,华盛顿州西雅图市,华盛顿州西雅图市,美国华盛顿大学
摘要:正弦 - vntr- Alu(SVA)逆转录子是仅在灵长类动物基因组中存在的可转座元素(TES)的子类。te插入可以作为顺式调节元素(CRES)选择;但是,使用生物信息学方法和报告基因测定法证明了SVA的调节潜力。这项研究的目的是证明通过CRISPR(群集间隔间隔短的腔粒重复序列)的SVA顺式调节活性),并随后测量直接对局部基因表达的影响。我们识别了17染色体上的一个区域,该区域富含人类特异性SVA。在该区域的比较基因表达分析揭示了多个人体组织中TRPV1和TRPV3的共表达,这在小鼠中未观察到,这突出了两种物种之间的关键调节差异。此外,TRPV1和TRPV3编码序列之间的基因间区域包含位于TRPV3启动子和TRPV1 3'端的上游的人类特定的SVA插入,该插入trpv1的3'端,强调了该SVA作为研究其潜在的CIS -CIS-候选者对这两种基因的候选者。首先,我们生成了SVA报告基因构建体,并证明了它们在HEK293细胞中的转录调节活性。然后,我们设计了一种双目标CRISPR策略,以促进整个SVA序列的删除,并生成编辑的HEK293克隆细胞系,其中包含纯合和杂合SVA缺失。在编辑的纯合∆ SVA克隆中,我们观察到TRPV1和TRPV3 mRNA表达的显着降低,与未经编辑的HEK293相比。此外,我们还观察到杂合∆ SVA克隆中mRNA表达水平的变异性增加。总体而言,在具有SVA缺失的编辑的HEK293中,我们观察到对TRPV1和TRPV3的共表达的中断。在这里,我们提供了人类特异性SVA的示例,其原位调节活性,支持SVA逆转座子的作用,是物种特异性基因表达的贡献者。
CRISPR相关的TN7转座子(铸造)共同OPT CAS基因用于RNA引导的转座。在基因组数据库中极为罕见。最近的调查报道了类似TN7样的转座子,该座子选择了I型I-F,I-B和V-K CRISPR效应子。在这里,我们通过对元基因组数据库的生物信息学搜索扩展了报告的铸造系统的多样性。我们发现了所有已知铸件的体系结构,包括级联效应器的布置,目标归巢方式和最小V-K系统。我们还描述了选择了I型I-C和IV型CRISPR-CAS系统的铸造家族。我们对非TN7施放的搜索确定了包括核酸酶死亡CAS12的候选者。这些系统阐明了CRISPR系统如何与转型共同发展并扩展可编程基因编辑工具包。
转座在重塑所有生物体的基因组中起着关键作用 1 。IS200/IS605 和 IS607 家族 2 的插入序列是最简单的移动遗传元件之一,仅包含其转座及其调控所需的基因。这些元件编码 tnpA 转座酶,这对于动员至关重要,并且通常携带辅助 tnpB 基因,而该基因对于转座而言并非必需。尽管 TnpA 在 IS200/IS605 转座子动员中的作用已得到充分证实,但 TnpB 的功能仍然很大程度上未知。有人提出 TnpB 在转座调控中发挥作用,尽管尚未确定相关机制 3–5 。生物信息学分析表明 TnpB 可能是 CRISPR–Cas9/Cas12 核酸酶的前身 6–8 。然而,尚未发现 TnpB 具有任何生化活性。我们在此表明,耐辐射奇球菌 ISDra2 的 TnpB 是一种 RNA 引导的核酸酶,受来自转座子右端元件的 RNA 引导,切割 5′-TTGAT 转座子相关基序旁的 DNA。我们还表明,TnpB 可以重新编程以切割人类细胞中的 DNA 靶位。总之,这项研究通过强调 TnpB 在转座中的作用扩展了我们对转座机制的理解,通过实验证实了 TnpB 是 CRISPR-Cas 核酸酶的功能性前体,并将 TnpB 确立为基因组编辑新系统的原型。