中等雷诺数下的薄翼型动态失速通常与靠近前缘的小层流分离气泡的突然破裂有关。鉴于层流分离气泡对外部扰动的强烈敏感性,使用直接数值模拟研究了在不同水平的低振幅自由流扰动下 NACA0009 翼型截面上动态失速的发生。对于前缘湍流强度 Tu = 0 .02%,流动与文献中的干净流入模拟几乎没有区别。对于 Tu = 0 .05%,发现破裂过程不太平稳,并且在动态失速涡流形成之前观察到层流分离气泡中强烈的相干涡流脱落。非线性模拟与瞬态线性稳定性分析相辅相成,该分析使用最优时间相关 (OTD) 框架的空间局部公式对破裂分离泡中层流剪切层的时间相关演化进行分析,其中非线性轨迹瞬时切线空间中最不稳定的部分随时间的变化被跟踪。得到的模式揭示了两种状态之间的间歇性切换。分离剪切层上的开尔文-亥姆霍兹滚转快速增长,分离泡过渡部分的二次不稳定性复杂化。后者的出现与线性子空间内瞬时增长率的大幅飙升以及非线性基流的更快转变有关。这些强烈的增长峰值与随后从层流分离泡中脱落的能量涡流密切相关。
硅自旋量子比特是用于大规模量子计算机最有希望的候选者之一,8 这得益于它们出色的相干性以及与CMOS技术的兼容性,可用于升级。先进的工业CMOS工艺流程可实现晶圆级均匀性和高器件成品率,但由于设计和操作条件不同,现成的晶体管工艺无法直接转移到量子比特结构上。因此,为了利用微电子行业的专业知识,我们定制了一条300毫米晶圆生产线,用于硅MOS量子比特集成。通过对MOS栅极堆栈进行精心优化和工程设计,我们报告了在毫开尔文温度下Si/SiOx接口上稳定均匀的量子点操作。我们提取了不同器件和各种操作条件下的电荷噪声,结果显示1 Hz时平均噪声水平低至0.61 μeV/√Hz,在某些器件和操作条件下甚至低于0.1 μeV/√Hz。通过对不同操作和设备参数下的电荷噪声进行统计分析,我们表明噪声源确实可以用两级涨落子模型很好地描述。这种可重现的低噪声水平,加上我们量子点的均匀操作,标志着 CMOS 制造的 MOS 自旋量子比特已成为成熟且高度可扩展的高保真量子比特平台。
*1 K(开尔文)单位是热力学温度的单位,绝对零度(0K)相当于-273.15℃。超导型在约10mK(-273.14℃)的环境下工作,半导体型在约100mK(-273.05℃)至1.5K(-271.65℃)的环境下工作,因此与超导型相比,半导体型有望实现稀释制冷机的小型化。 *2 PsiQuantum 的单光子技术需要一个大型冰箱来冷却光电探测器。 *3 虽然无法进行通用计算,但已经开发了中性原子方法:289个量子比特(QuEra,专用于一类组合优化问题)和光学方法:216个量子比特(Xanadu,专用于高斯玻色子采样)。 *4 请参阅 Pasqal 的《绿色计算路线图中的量子计算》。作为指导原则,8 榻榻米房间的制冷能力约为 2.5kW。值得注意的是,数值会根据每种方法所操作的组件和量子比特的数量而变化,而且当前量子计算机能够解决的问题都不是小规模或实用的,因此很难与当前的经典计算机进行简单的比较。 *5 维持量子态所需的时间。如果相干时间太短,量子态就会被破坏,产生噪声,降低计算的准确性。 *6 保真度是表示两个量子态接近程度的指标,代表量子电路计算的准确性。
摘要1987年的诺贝尔物理学奖庆祝了发现超导铜氧化物(陶瓷),其过渡温度高于30开尔文系列。1987年标志着“高t c”超导性的开始,这是一个多元化的铜氧化物家族,它以“固有”的高t c超导性发现而无需外部压力,应变或野外调节。在接下来的几十年中,研究了一类广泛的基于氧化物的分层超导体,包括但不限于ti-,bi-,ru-,co-基于NI-基于NI的氧化物。然而,在没有铜的其他氧化物中,从未在另一种氧化物中观察到“内在”高t c超导性。因此,铜在电子配对机制中的不可思议的唯一性在凝结物理学上是一个长期存在的谜团。“高t c非常规超导性是铜的特有的吗?”在这里,我建议并证明(1)超导性在元素元素表中很常见; (2)一个模型,以增加一般分层系统中超导性(T C)的能量尺度。因此,逻辑含义是“高t c超导性无处不在”。按照这个命题,我们在分层的氧化镍中进行了第一次演示,观察到高t c超导性无需外部调制。查询:3943 6303
被捕获的离子可以通过用激光激发其内部电子态形成有效的量子二能级系统,从而充当有前途的可扩展量子比特,而离子在谐波势阱中的量化运动状态使我们能够通过库仑力与相邻离子相互作用。因此,高保真操作需要精确了解系统的运动退相干时间,即离子的运动状态不再可靠地被知道或不再能被控制的时间。现有的运动相干性测量通过将运动状态与激光驱动的内部跃迁耦合来间接控制和测量运动状态,因此,它们可能容易出现电子状态退相干和激光幅度或频率波动。在本论文中,我们应用了之前提出的直接电场操纵被捕获离子运动相干态的机制,在一种新的自由进动序列中测量运动相干时间。该序列由连续谐振子相空间中两个相位差可变的相干位移组成,由可变的延迟时间分隔。在 4 开尔文的超高真空室中,使用位于铌表面电极阱上方 50 微米处的锶-88 + 离子,我们测量了 (24 ± 5) 𝑠 − 1 的运动退相干率。该测量速率与系统的预期退相干率相匹配,其中捕获离子加热在幅度上超过其他形式的退相干,这很可能是我们系统的情况。
通常,大气中的氧气含量较高,而氮气更靠近地球表面。“多年来,大气科学家一直在研究氧气含量低于应有水平的情况,但我们发现了可能的原因,并揭示了比以往任何时候都更详细的信息,”科学学院物理与天文系博士生梅斯基塔说。这一突破性的发现由美国宇航局资助。它刊登在美国宇航局太阳物理学主页上,并于 2020 年 7 月 23 日发表在《地球物理研究杂志-空间物理学》上。该论文的标题为“在平静地磁条件下对静态稳定的高纬度中间层和低热层的中性剪切不稳定性进行现场观测”。克莱姆森研究小组发射了火箭,释放出一种无害气体作为造影剂,以照亮大气风型,从而对其进行拍摄。这项研究名为“超级水枪”活动,于 2018 年 1 月 26 日在阿拉斯加的 Poker Flat 研究区进行。“我们的测量是在距地球表面 65 英里的地方进行的,显示风速约为每小时 100 英里,”梅斯基塔说。“冲浪波”是风流相互卷入并在天空中形成波浪的戏剧性效果,这是开尔文-亥姆霍兹不稳定性 (KHI) 的结果。第 3 页继续
采用传统 CMOS 工艺制造但在 4 K 及以下低温下工作的微电子器件最近引起了量子计算领域的关注,因为它们可用作精密控制器和低噪声放大器 [1,2]。这种将电子设备直接纳入低温环境而不是在室温下操作的方法可以在 CUORE(罕见事件地下低温观测站)等实验中提供类似的优势,CUORE 使用低温辐射热法来搜索无中微子双重 beta 衰变。CUORE 使用 TeO 2 晶体上的中子嬗变掺杂 (NTD) 热敏电阻来感应物理能量沉积引起的温度变化。目前,所有 CUORE 电子设备,包括用于偏置 NTD、放大信号和执行读出的电子设备,都在室温下运行 [3]。未来的带粒子识别的 CUORE 升级版 (CUPID) 计划利用为 CUORE 开发的通用低温基础设施,但其电子基础设施的升级正在考虑中 [4]。设计为在 4 K 或以下运行的 CMOS 微电子技术为 CUPID 中的信号前置放大提供了一种替代方法,可以降低电子噪声并引入适度的通道复用因子。到目前为止,在亚开尔文温度下对 CMOS 器件特性的测量很少,如果我们希望考虑使用它们在 CUPID 基准工作温度附近构建放大器和多路复用器,就必须了解这些特性。在本文中,我们介绍了 180 nm CMOS 技术在低至 100 mK 时的首次特性之一,这将用于指导这些器件的设计。
冷冻是最古老和最常用的食品保鲜方法之一。自旧石器时代和新石器时代以来,人们就一直使用冰雪来冷却食物,冷冻就被认为是一种非常有效的长期食品保鲜方法。盐和冰的冷却效果首次由化学家罗伯特·波义尔于 1662 年公开讨论,但这项技术在 16 世纪的西班牙、意大利和印度肯定已经为人所知。在维多利亚时代,使用辐射“夜间冷却”在浅湖中制造冰并在冰屋中保存冰雪是大型乡间别墅的常见做法。冰是特权阶层专用的产品,冰冻甜点非常时尚,是巨大财富的象征。在气候更温和的地方,冰雪的保存显然很困难,只有通过人工冷却,冷冻食品才得以更广泛地普及。1755 年,威廉·卡伦首次在没有任何自然冷却形式的情况下通过在低压下蒸发水来制造冰。 1834 年,雅各布·珀金斯 (Jacob Perkins) 制造了第一台使用乙醚的制冰机。在接下来的 30 年里,制冷技术迅速发展,由焦耳和开尔文等人引领,并申请了第一批与食品冷冻相关的专利。1865 年,纽约建造了第一座使用盐水进行冷却的冷藏仓库。1868 年,Anchor Line 的 Circassian 和 Strathl 号船上使用了船用冷风机
从过去的现场和建模研究中众所周知,安大略湖的循环。然而,风模式的明显变化可能是由于气候变化造成的,导致电流形成的细微变化对水资源和水生栖息地产生影响。使用丹麦液压研究所(DHI)的Mike 3 Mike 3建模框架的高分辨率三维数值模型开发出来,以描述2018年湖面和沿海循环特征,然后与过去的研究形成鲜明对比。经过验证的模型有效地描述了整个湖泊范围的工艺,其中包括罗切斯特和密西沙加盆地的季节特定大回旋,以及北部和南部海岸线沿线的沿海潮流。在等温季节(未分层),湖中间的一个明确定义的向西流动,将北部的抗气旋(顺时针)Gyre与南部的Gyre和Westward Currents分开。在分层的季节中,在近海和近岸水域中描述的关键物理过程,包括近惯性波(〜17 h),上升事件频率(5-10天)以及表面清晰度(〜5 h)通常与过去的研究相对应。上升事件是在西南风期间发生的主要北部近岸物理过程。情节开尔文波大部分仅限于北岸,在那里风向和形态可以维持它们,而沿海边界层的跨岸运输则最小。在现场观察的支持下,结果表明,近年来分层季节的北部近岸主要循环模式发生了变化。
NASA的第4个新边界任务是Titan Dragonfly可重新定位的Lander。 这款同轴性四极管车将于2028年在泰坦的火箭上发射。 在重力辅助地球飞行和大约6年的运输速度之后,蜻蜓将在2034年左右进入泰坦大气层,目的是探索泰坦的益生元化学和可居住性。 自2016年以来,这种独特应用程序的多旋动设计一直在不断发展,例如泰坦(Titan)在95开尔文(-288 F)的低温气氛,重力为14%的地球大气密度为440%的标准海平面空气的440%,以及在所有这些条件下都无法在所有这些条件下测试整个系统。 本文重点介绍了蜻蜓着陆器的转子设计方面,并为多种飞行条件介绍了多运动设计优化的新颖框架。 该方法论利用机器学习方法,并在蜻蜓的背景下进行了证明。 首先提出了一种新的溢出机学习机翼性能(PALMO)数据库。 然后将Palmo包裹在贝叶斯优化框架内,并应用于四连杆系统(蜻蜓兰德勒的一侧)。 使用CAMRAD-II综合分析软件对优化的每次迭代生成培训数据,以评估多个相关飞行条件下连续的转子设计。 在CAMRAD-II中分析了大约900个转子设计,发现了4旋转系统的最佳设计,该设计需要对Palmo替代模型进行900万个查询。NASA的第4个新边界任务是Titan Dragonfly可重新定位的Lander。这款同轴性四极管车将于2028年在泰坦的火箭上发射。在重力辅助地球飞行和大约6年的运输速度之后,蜻蜓将在2034年左右进入泰坦大气层,目的是探索泰坦的益生元化学和可居住性。自2016年以来,这种独特应用程序的多旋动设计一直在不断发展,例如泰坦(Titan)在95开尔文(-288 F)的低温气氛,重力为14%的地球大气密度为440%的标准海平面空气的440%,以及在所有这些条件下都无法在所有这些条件下测试整个系统。本文重点介绍了蜻蜓着陆器的转子设计方面,并为多种飞行条件介绍了多运动设计优化的新颖框架。该方法论利用机器学习方法,并在蜻蜓的背景下进行了证明。首先提出了一种新的溢出机学习机翼性能(PALMO)数据库。然后将Palmo包裹在贝叶斯优化框架内,并应用于四连杆系统(蜻蜓兰德勒的一侧)。使用CAMRAD-II综合分析软件对优化的每次迭代生成培训数据,以评估多个相关飞行条件下连续的转子设计。在CAMRAD-II中分析了大约900个转子设计,发现了4旋转系统的最佳设计,该设计需要对Palmo替代模型进行900万个查询。此演示案例使用统一的流入,在114个CPU内核中评估了10,000,000个潜在的候选转子设计,并在27.8小时内使用规定的唤醒模型在27.8小时内评估了10,000个潜在的转子设计。因此,这项工作可以实现中心转子设计优化,而无需访问高性能计算。