。CC-BY 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 8 月 17 日发布。;https://doi.org/10.1101/2024.08.15.608188 doi:bioRxiv 预印本
抽象的船从硫和气溶胶排放中亮起低船云,从而产生了可见的“船只轨道”。在2020年,新的运输法规规定,允许的燃料硫含量减少了约80%。最近的观察结果表明,可见的船只轨道已减少。模型模拟表明,自2020年以来,运输法规已引起净辐射强迫 + 0.12 wm -2。对最近温度异常的分析表明,北半球表面温度异常在2022- 2023年与观察到的云辐射强迫相关,并且云辐射强迫与2020年运输排放变化的模拟辐射强迫在空间上相关。运输排放变化可能会加速全球变暖。为了更好地限制这些估计,需要更好地访问船舶位置数据并了解船舶气溶胶排放。了解减少排放的风险和益处以及在鲁棒归因方面的困难强调了归因于拟议的有意气候干预的巨大不确定性。
亚历山德拉·维多利亚·巴斯利、1,2,4,20 O´scar Gutie´rrez-Gutie´rrez、1,2,20 Elke Hammer、3,5 Fabian Koitka、1,2,4 Amin Mirzaiebadizi、6 Martin Steinegger、7 Constantin Pape、4,8 Linda Bo´hmer、1 Henning Schroeder、9 Mandy克莱因索格、1,2 梅兰妮·恩格勒、10 离子·克里斯蒂安·西尔斯泰亚、10 洛萨·格雷默、11,12 迪特·威尔博尔德、11,12 珍妮·阿尔特姆·乌勒、13,14 菲利克斯·马尔巴赫、15,16 格德·哈森福斯、1,2,4 沃尔夫拉姆-休伯特·齐默尔曼、2,4,17,18穆罕默德·礼萨·艾哈迈迪安,6 Bernd Wollnik, 2,4,19 和 Lukas Cyganek 1,2,4,18,21,* 1 哥廷根大学医学中心心脏病学和肺病学诊所干细胞科,哥廷根,德国 2 德国心血管研究中心 (DZHK),哥廷根,德国 3 德国心血管研究中心 (DZHK),格赖夫斯瓦尔德,德国 4 哥廷根大学卓越集群“多尺度生物成像:从分子机器到可兴奋细胞网络”(MBExC),哥廷根,德国 5 格赖夫斯瓦尔德大学医学院遗传学和功能基因组学跨学院研究所,格赖夫斯瓦尔德,德国 6 乌塞尔多夫海因里希海涅大学医学院和大学医院生物化学和分子生物学 II 研究所,乌塞尔多夫,德国 7 生物科学学院,首尔国立大学,首尔,韩国 8 乔治·奥古斯特·哥廷根大学计算机科学研究所,哥廷根,德国 9 马克斯·普朗克多学科科学研究所 NMR 信号增强组,哥廷根,德国 10 乌尔姆大学应用生理学研究所,乌尔姆,德国 11 海因里希·海涅大学物理生物学研究所,乌塞尔多夫,德国 12 生物信息处理研究所、结构生物化学研究所(IBI-7),J ulich GmbH 公司,J ulich,德国 13 科隆大学医学院和科隆大学医院科隆基因组学中心,科隆,德国 14 柏林医学系统生物学研究所基因组学平台,马克斯·德尔布吕克分子医学中心 - 柏林,德国 15 科隆大学医院人类遗传学研究所,科隆,德国 16 研究所海德堡大学人类遗传学研究所,海德堡,德国 17 哥廷根大学医学中心药理学和毒理学研究所,哥廷根,德国 18 弗劳恩霍夫转化医学和药理学研究所 ITMP 转化神经炎症和自动显微镜研究所,哥廷根,德国 19 哥廷根大学医学中心人类遗传学研究所,哥廷根,德国 20 这些作者贡献相同 21 主要联系人 *通信地址:lukas.cyganek@gwdg.de https://doi.org/10.1016/j.celrep.2024.114448
许多教师对与人工智能相关的学术不端行为的潜在违规行为感到震惊,并对未来可能发生的事情感到担忧,因为人工智能越来越能够模仿人类的声音和决策。然而,执着于作弊可能会导致对抗环境,并给已经负担沉重的教师带来大量时间投入。我们并不声称拥有所有答案,但我们可以提供一些选择,因为我们都在努力寻找方法来帮助我们的学生重视学习过程、深入了解基础概念的重要性以及人工智能的新兴普及,这无疑会影响他们未来的职业生涯。我们知道学术不端行为并不新鲜。斯坦福大学的两位教育学者 Victor Lee 和 Denise Pope (2023) 指出,早在 ChatGPT 出现之前,美国 60-70% 的高中生报告称,他们在上个月至少参与过一次“作弊”行为。虽然超出了本白皮书的范围,但学生从事不端行为有更深层次的系统性原因。帮助学生考虑与 AI 相关的道德决策的起点可能是确保他们明白,了解老师的政策是他们的责任。我们的白皮书“与学生讨论 AI 的指南”可能对您有所帮助。德克萨斯理工大学对涉嫌学术不端行为的回应流程是什么?学生行为办公室制定了一份《教师学术诚信指南》,概述了该流程。第一步是审查事件并与学生会面以获得初步了解,并确定您是否希望提交报告并推进官方大学调查。下一步是填写一份表格,您将在其中提交所有支持文件。如果事件无法在早期阶段由教师和学生解决,最后一步是正式的学术诚信调查和听证程序。给教师的一些建议:
人工智能背景下的意识本质:重新定义人与技术的关系 Izuchukwu Kizito Okoli* 和 Osita Gregory Nnajiofor* https://dx.doi.org/10.4314/ujah.v25i1.1 摘要 人工智能 (AI) 背景下的意识本质提出了一个需要分析和进一步探索的问题。本研究旨在通过研究意识与 AI 的交集(包括形而上学含义和考虑)来重新定义人与技术的关系。主要目标是在 AI 的背景下定义意识,评估 AI 表现出意识的潜力,研究对人类体验的形而上学含义,并探索伦理层面。研究结果表明,意识涉及自我意识、感知、意向性和主观体验。虽然 AI 可以实现高级认知能力,但高阶意识的存在仍然不确定,这引发了关于主观意识本质的形而上学问题。意识难题凸显了连接物理过程和主观体验的挑战,强调了形而上学考虑的必要性。本文还探讨了人工智能集成的伦理影响及其对人类体验的影响。建议包括进一步研究人工智能中的意识、
最近,机器学习 (ML) 在自主武器系统 (AWS) 开发中的应用给地缘政治稳定和人工智能研究领域的思想自由交流带来了严重风险。与超级人工智能 (AGI) 带来的风险相比,这一主题最近受到的关注较少,但对技术发展进程的假设较少,因此是一个近期问题。机器学习已经使 AWS 能够在许多战场角色中取代人类士兵,从而降低发动进攻性战争的前期人力成本,从而降低政治成本。在同等对手的情况下,这增加了“低强度”冲突的可能性,而这种冲突有升级为更大范围战争的风险。在非同等对手的情况下,它减少了侵略战争对国内的反击。无论使用军事人工智能的其他道德问题(例如平民伤亡风险)如何,这种影响都可以发生,并且不需要任何超人的人工智能能力。此外,AWS 的军事价值引发了人们对人工智能军备竞赛的担忧,以及对人工智能研究实施国家安全限制的错误做法。我们在本文中的目标是提高公众和机器学习研究人员对军事技术完全或接近完全自主所带来的近期风险的认识,并提供监管建议以减轻这些风险。我们呼吁人工智能政策专家,尤其是国防人工智能社区在开发和部署 AWS 时保持透明度和谨慎,以避免我们在此强调的对全球稳定和人工智能研究的负面影响。
罕见的多能干细胞通过耗时的过程每秒补充数百万个血细胞,经过了越来越多的谱系限制祖细胞的多个阶段。尽管对血液形成系统的侮辱强调了需要从干细胞中进行更快的血液补充的需求,但已建立的造血模型仅暗示了每个血细胞谱系的一个强制性分化途径。在这里,我们建立了不同的干细胞之间的非等级关系,可以补充所有血细胞谱系和干细胞几乎完全补充血小板,这是止血和重要作用在先天和适应性免疫系统中至关重要的谱系。这些独特的干细胞使用细胞,分子和功能分开的途径来补充分子不同的巨核细胞限制的祖细胞:稳定稳态多能途径较慢和快速轨道紧急训练的紧急训练血小板限制途径。这些发现为增强血小板补充的框架提供了一个框架,在这种情况下,血小板缓慢恢复仍然是主要的临床挑战。
Gregory Vijayendran 先生 Rajah & Tann Singapore LLP 股权合伙人 Voo Teck Chuan 博士 新加坡保健集团医疗伦理办公室主任 Tan Sor Hoon 教授(至 2023 年 6 月) 新加坡管理大学社会科学学院哲学教授兼学术主任 Audrey Chiang 女士 Dentons Rodyk & Davidson LLP 高级合伙人 Mahesh Choolani 副教授 新加坡国立大学杨潞龄医学院妇产科系主任兼高级顾问;新加坡国立大学医院妇产科系首席兼高级顾问;新加坡国立大学卫生系统 (NUHS) 妇产科集团主任 Julian Savulescu 教授 新加坡国立大学陈素兰医学伦理百年教授;新加坡国立大学杨潞龄医学院生物医学伦理中心主任;及英国牛津大学 Uehiro 实用伦理学讲座教授 Tan Meng How 副教授 南洋理工大学化学与生物医学工程学院副教授 Tan Ee Shien 兼职副教授 甘当克保妇女儿童医院儿科医学系遗传学服务主任兼高级顾问;国家扩大新生儿筛查计划主任
NUT 癌 (NC) 是一种恶性肿瘤,目前尚无有效治疗方法。约 70% 的 NUT 癌与染色体易位事件有关,这些事件导致 BRD4::NUTM1 融合基因的形成。由于 BRD4::NUTM1 基因在细胞系中异位表达时具有明确的细胞毒性,因此该融合基因是否能够引发 NC 仍存在疑问。本文,我们报告了首个 NUT 癌基因工程小鼠模型,该模型在小鼠中重现了人类 t(15;19) 染色体易位。我们证明,小鼠 t(2; 17) 同源染色体易位形成 Brd4::Nutm1 融合基因,可在小鼠中诱发恶性肿瘤。肿瘤呈现出与人类 NC 相似的组织病理学和分子特征,未分化细胞富集。与人类 NC 发病率的报道类似,Brd4::Nutm1 可从多种组织中诱导 NC,且表型变异性强。低分化癌的持续诱导表明 BRD4::NUTM1 具有强大的重编程活性。新小鼠模型为 NC 提供了重要的临床前模型,将有助于更好地理解和开发 NC 疗法。
自20世纪40年代问世以来,晶体管就不断改变着我们的生活。作为逻辑门和集成电路(芯片)的核心元件,晶体管无疑在推动计算机、智能手机、平板显示器、物联网乃至所有电子或电气系统的发展方面发挥着无与伦比的作用。过去几十年来,主流晶体管通常由硅材料和金属氧化物等无机半导体制成,有利于实现高迁移率、快速开关速度和优异的稳定性。因此,硅晶体管和金属氧化物半导体场效应晶体管被广泛应用于电子应用。然而,尽管这些晶体管的制造规模要小得多以满足摩尔定律的预测,但它们却非常坚硬,并且几乎接近速度和功耗的基本极限。由于未来对具有机械灵活性/坚固性和低功耗的晶体管的需求,功能材料、设备配置和集成处理技术的创新以促进从刚性设备到柔软、耐用和生物相容性的设备的演变势在必行。1