目的本课程的目标是学习如何在力学中使用高级数学工具,学习如何在可变形的身体,流变学响应中构建复杂应力 - 应变状态的物理和数学模型,并学习如何设计静态多样化的不确定的结构。在本课程中,学生将获得以下能力:能够在力学中使用高级数学工具,能够在可变形物体中构建复杂应力 - 应变状态的物理和数学模型,设计静态地倍增不确定的结构。计划遵循和完成课程的计划义务;相关研究文献的介绍;课程主题的概述; 3D连续体的概念;凯奇(Cauchy)对应力矢量,正常和剪切应力的定义,在变形体中有限体积的静态平衡,考奇(Cauchy)的压力定理;应力张量(Cauchy,第一Piola-Kirchhoff,第二个Piola-Kirchhoff,Biot等。学习成果);应力张量的偏离和静水部分;主应力和3D中的最大剪切应力;压力张量和压力张量偏离部分的不变性;菌株理论;位移载体,变形梯度,变形张量,小/有限菌株理论;小应变张量的几何解释;应变的兼容条件;由于外部载荷引起的弹性应变能;能量方法,每单位体积的应变能密度;虚拟工作的原则;理想情况是弹性材料,绿色弹性;物质各向异性;各向同性,线性弹性材料;从实验中确定材料常数;胡克定律,超弹性;体积和失真工作/能量;温度的影响; navier-lame方程;特定的应力应变状态;通风应力功能;使用FEM的计算机模拟;复杂的现实生活中的例子和案例研究的先决条件符合硕士机械工程研究计划的入学条件 - 研发计划。
• 提高设计审批流程的一致性。 • 提倡使用耐用的弹性材料,以降低申请人的维护成本。 • 为该计划的合格申请人创造健康的生活环境。 • 电器符合加利福尼亚州的能源和水效率最低要求。 • 平衡材料质量与成本控制原则。这些适用于 OOR 计划的维修、重建和 MHU 更换类型的拨款奖励,并应成为工作范围(“SOW”)的一部分。目前的期望是所有计划房屋都符合最低野外城市界面(“WUI”)规范。该计划保留根据具体情况放弃此处规定的最低建筑和设计标准的权利。该计划将在仔细分析施工经理 (CM) 的豁免请求后做出豁免。
超弹性圆柱壳在加压下表现出的显著变形使其成为可编程充气结构的理想平台。如果施加负压,圆柱壳将弯曲,从而产生一系列丰富的变形模式,由于选择了超弹性材料,所有这些变形模式都可以完全恢复。虽然真空下的初始屈曲事件很容易理解,但这里探索了后屈曲状态,并确定了设计空间中发生耦合扭曲收缩变形模式的区域;通过仔细控制我们的均质壳的几何形状,可以控制收缩与扭曲的比例。此外,可以通过改变我们壳的圆周厚度来解锁作为后屈曲变形模式的弯曲。由于这些软壳可以从屈曲引起的显著变形中完全恢复,因此可以利用这些不稳定性驱动的变形来构建能够通过单个驱动输入进行可编程运动序列的软机器。
摘要:在发现X射线后,闪烁体通常用作诊断医学成像,高能物理学,天体物理学,环境辐射监测和安全性检查中的高能辐射传感器。常规闪烁体面临的内在局限性,包括闪烁的光的提取效率低和发射率低,导致商业闪烁体的效率小于10%。克服这些局限性将需要新材料,包括闪烁的纳米材料(“纳米激素”),以及提高闪烁过程效率的新的photonic方法,提高材料的排放速率,并控制闪烁光的光的方向性。在这种观点中,我们描述了新出现的纳米弹性材料和三个纳米光子平台:(i)等离子体纳米纳米菌 - (ii)光子晶体和(iii)高性能闪烁体的高Q跨面。我们讨论了纳米激素和光子结构的组合如何产生“超闪烁体”,从而实现最终时空分辨率,同时在提取的闪烁发射中可以显着提升。
分子结构:本讲座探讨聚合物结构,重点介绍其分子排列,包括线性、支链和交联形式,以及这些结构如何影响强度、柔韧性和热稳定性等特性。了解这些关系是设计用于各种应用的聚合物的关键。 聚合物固体结构:本讲座研究聚合物固体的结构,重点介绍晶体、非晶态和半晶体排列。它讨论了这些结构变化如何影响机械、热学和光学特性,影响它们在工程和工业应用中的使用 聚合物的弹性:本讲座介绍聚合物的弹性,重点介绍其在应力下变形和恢复的能力。它解释了影响弹性的因素,例如分子结构、温度和交联,并强调了在柔性和弹性材料中的应用 粘弹性:本讲座探讨粘弹性,即聚合物在应力下同时表现出粘性(流动)和弹性(变形)行为的特性。关键主题包括时间相关响应、应力松弛和蠕变,并提供记忆泡沫和生物医学设备等材料的应用示例。
机械和航空航天工程罗格斯大学 - 新不伦瑞克省,皮斯卡塔维,新泽西州08854,美国摘要提出了一种新颖的有限元模型,以研究嵌入细胞外基质中轴突的机械响应,当时纯粹在纯粹的非伴随kinematic Kinematic Bounders条件下伸长额。Ogden超弹性材料模型描述了轴突和细胞外矩阵材料的特征。对白质中的两个轴突绑定方案进行了研究,其中一个少突胶质细胞(单ol)具有多个连接的多oligodendrocyte(Multi-Ol)。在多ol绑定构型中,将产生的力随机定向为分布式神经胶质细胞在其附近的轴突周围任意包裹。在单摩尔设置中,位于中央的少突胶质细胞在附近的多个轴突。绑定力针对这种少突胶质细胞,从而导致更大的方向性和较远的应力分布。与轴突的少突胶质连接由弹簧式仪表板模型表示。髓磷脂的材料特性是少突胶质细胞刚度参数化的上限(“ K”)。提出的FE模型可以实现连接机制及其对轴突刚度的影响,以准确确定由此导致的应力状态。对不同连接场景的应力应变图的根平方偏差分析显示,轴突刚度随着束缚的增加而增加,表明少突胶质细胞在应力再分布中的作用。在单醇子模型中,对于每个轴突相同数量的连接,RMSD值随着“ K”(少突胶质细胞弹簧刚度)值的增加而增加。RMSD计算表明,对于“ K”值,与多OL相比,单摩尔模型产生的略微更硬模型。当前的研究还通过随机化和添加连接以确保更大的响应能力来解决多OL模型的潜在几何局限性。两个子模型中注意到的环状弯曲应力表明,轴突损伤积累和重复负载故障的风险。关键字:微力学,有限元素,少突胶质细胞,轴突损伤,CNS白色物质,多尺度模拟,超弹性材料,Abaqus incenclature
交联弹性体是可拉伸的材料,通常不可回收或可生物降解。中链链长多羟基烷酸盐(MCL-PHANE)柔软且延性,使这些基于生物的聚合物成为可生物降解的弹性体的良好候选者。弹性通常是通过交联网络结构来赋予的,而共价可适应性网络已作为解决方案出现,以通过触发的动态价值键的重排来制备可回收的热固件。在这里,我们通过在生物学生产的MCL-phase中化学安装可价型适应性网络来开发可生物降解和可回收的弹性体。具体而言,使用Pseudomonas putida的工程菌株用于生产含有吊坠末端烷烃的MCl plus,作为用于官能化的化学手柄。硫醇 - 烯化学用于掺入硼酯(BE)交联,从而产生基于PHA的玻璃体。mcl-lass与BE在低密度(<6摩尔%)的交联,提供了一种柔软的弹性材料,可显示热重点,可生物降解性和生命末期工作。机械性能显示了包括粘合剂和可生物降解机器人和电子产品在内的应用的潜力。
剥落的面罩是一种掩模,其中包含弹性材料,例如明胶,使其易于涂抹和去除。这些剥落的口罩通过散布以形成稀薄的透明膜层来施加到面部。pangasius cat鱼明胶是剥落蒙版制剂中的胶凝剂,而将astaxanthin添加为抗氧化剂。astaxanthin是一种类似于β-胡萝卜素的分子结构的类胡萝卜素色素,与β-胡萝卜素相比,在中和自由基中表现出更强的抗氧化活性。这项研究的目的是使用DPPH方法确定由Pangasius catfish(Pangasius hypophthalmus)明胶的剥落凝胶口罩的抗氧化活性。astaxanthin提取物用作剥落凝胶面膜产生的活性成分,astaxanthin提取物浓度为0.5%。由pangasius catfish明胶制成的剥落凝胶面膜的抗氧化活性测试的结果补充了astaxanthin,其IC 50值为7572.84 µg/ml,而比较面膜的IC 50值(亮柠檬黑头品牌)为5045.74 µg/ml。这些结果表明,与市场上可用的比较口罩相比,产生的面膜的抗氧化活性较低。
摘要:对骨再生的可生物降解支架的兴趣日益增加,需要研究适合脚手架形成的新材料。聚(乳酸)(PLA)是一种通常用于生物医学工程的聚合物,例如在组织工程中作为可生物降解的材料。但是,PLA沿其降解时间的机械行为仍未得到很好的探索。因此,需要研究在生理培养基中孵育的PLA支架的机械性能,以表明PLA的潜力被用作可生物降解的脚手架形成的材料。本研究的目的是确定孵育前后PLA支架的机械性能,并应用构造材料模型进行进一步的行为预测。由3D打印机“ Prusa I3 Mk3s”打印了两组PLA支架,并通过紫外线和乙醇溶液进行了灭菌。在DMEM(Dulbecco的改良Eagle培养基)中孵育第一套标本,为60、120和180天,以保持36.5°C的温度。在“ Mecmesin Multitest 2.5-I”测试架上进行压缩测试后,确定了支架的机械性能,并使用在两种不同的速度模式下施加的力。获得的数据曲线与超弹性材料模型拟合,用于模型适用性研究。将第二组样品在PBS(磷酸盐缓冲盐水)中孵育20周,并用于聚合物降解研究中。获得的结果表明,在预测的新骨组织形成周期中,PLA支架的机械性能在生理培养基中孵育过程中不会降低,尽管水解从一开始就开始并随时间增加。pla作为一种材料似乎适合在骨组织工程中使用,因为它允许具有高机械强度的生物相容性和可生物降解的支架,这是有效组织形成所需的。