凹坑表面技术旨在通过涡流强化通道中的传热,同时保持水力损失的适度增长,该技术在热能工程中有着广泛的应用[1,2]。微电子领域对此也产生了一定的兴趣[3-5],而关于普朗特数对层流传热强化影响的研究发表得就更少了。具体来说,在综述[2]中提到了[6,7]项研究,其中讨论了变压器油在加热壁面上具有单排球形和椭圆形凹坑的微通道中的流动。研究发现,在一个加热到 30 ◦ C 的九段微通道(宽度为 2,高度为 0.5,以通道高度为单位)的壁上,在低速(雷诺数 Re = 308)变压器油流动的情况下,定位具有中等深度(0.2)和螺距为 1.5 的球形凹坑,可以促进涡流强化传热,并且与光滑通道的情况相比,该壁面的传热增加了约 2.5 倍,水力损失减少了 7%。与光滑通道的情况相比,具有相同斑点面积(宽度为 0.55,长度为 1.5,以底部凹坑斑点直径为单位)和相同深度的椭圆形凹坑可以使传热进一步增强 3.4 倍(即,总共增强了 8.5 倍),水力损失减少 2.1%。 [8] 中发现了具有稀疏单排倾斜槽的通道稳定段中层流气流的局部加速。形成剪切流中的最大纵向速度几乎是平面平行通道中最大流速的 1.5 倍。后来确定,热效率由冲洗通道上平均的相对总努塞尔特数指定
电池建模的中心步骤是识别模型参数。但是,参数的确定是时间耗尽,通常是次优的。强化学习提供了一种有希望的替代方案,其中代理通过交互和目标奖励来学习最佳参数。本学士学位论文的目标是对基于RL的参数确定的全面搜索和一个简单示例的实际实现。
强化学习已成为实现高级机器人控制的最突出的范式之一。一个典型的例子是在具有挑战性的地形上对四足动物的运动,通过RL学到的政策现在正在使用商业机器人平台发货。然而,机器人RL面临特定的挑战,因为它们的物理实施例收集了大量现实的交互数据是不可能的。为了渲染机器人增强学习,可以以各种方式整合先前的信息,从模拟(SIM2REAL),人类演示或校正到生成模型(例如LLMS)。
深度加固学习(DRL)是一种在各种复杂环境中训练自主代理的方法。尽管在众所周知的环境中表现出色,但它仍然容易受到较小条件的变化,这引起了人们对其在现实世界应用中的可靠性的担忧。为了改善Usabil的影响,DRL必须表现出可信赖和稳健性。通过对环境动力学的良好适合对抗性攻击进行训练,通过训练代理人来训练代理商,将DRL鲁尔的鲁棒性转化为未知变化的鲁棒性。解决这个关键问题时,我们的工作对当代对抗攻击方法进行了深入分析,系统地对其进行了分类并比较其目标和操作机制。此分类提供了一个详细的见解,以了解对抗性攻击如何有效地评估DRL代理的弹性,从而为增强其稳健性铺平了道路。
能够在探索性数据分析(EDA)中找到一组记录(EDA)的能力,以取决于数据集中对象的散射以及用户对数据的了解及其表达需求的能力。这产生了各种EDA方案和解决方案,它们在向用户提供的指导上有所不同。在本文中,我们研究了建模的好奇心与熟悉程度(DRL)(DRL)和表达数据探索操作员之间的相互作用。我们将好奇心形式化为固有的奖励和熟悉,作为外在奖励。我们研究了为这些奖励所学的几个政策的行为。我们在SDSS上进行的实验,一个非常大的天空调查数据集1提供了几种见解,并证明需要更深入地检查DRL和数据探索操作员,而这些探索者超越了钻孔和滚动。
摘要 - 行驶边缘计算(VEC)由于其为计算密集型任务提供足够的组合资源的能力而引起了近视关注。但是,如何在车辆内分配计算任务并有效地管理任务消耗的资源已成为一种挑战。为了解决这个问题,这项研究推进了使用辅助车辆(AV)进行载体任务的主张,并引入了一种新颖的辅助车辆算法(AVA)。ava既可以在车辆环境中充分利用计算资源,并同时实现任务延迟减少,能源消耗最小化以及任务完成率的增强率。此外,我们建立了一个联合学习框架,以明智地确定通过实施创造性机制的AV分配的比例。实验结果验证了我们的方法不仅可以改善关键系统性能指标,还可以确保对移动车辆的计算资源进行全面利用。
毫米波小细胞与定向光束形成的密集部署是一种有前途的解决方案,可增强当前无线通信的净工作能力。但是,毫米波通信链路的可靠性可能会受到严重的路径,阻塞和耳聋的影响。作为一种款项,移动用户受到频繁的交接,这会限制用户吞吐量和移动终端的电池寿命。为了解决这个问题,我们的论文提出了一个深层的多代理控制学习框架,用于分布式移交管理,称为Rhando(增强移交)。我们将用户建模为代理商,他们在考虑相关成本的同时,学习如何执行移交以通过网络优化网络。所提出的SOUTIOT已完全分布,从而限制了信号传导和计算开销。数值结果表明,与传统方案相比,所提出的解决方案可以提供更高的吞吐量,同时大大限制了移交的频率。
摘要 — 建模困难、模型时变和外部输入不确定是燃料电池混合动力汽车能源管理面临的主要挑战。本文提出了一种基于模糊强化学习的燃料电池混合动力汽车能源管理策略,以降低燃料消耗、维持电池的长期运行并延长燃料电池系统的使用寿命。模糊 Q 学习是一种无模型强化学习,可以通过与环境交互进行自我学习,因此无需对燃料电池系统进行建模。此外,燃料电池的频繁启动会降低燃料电池系统的剩余使用寿命。所提出的方法通过在强化学习的奖励中考虑燃料电池启动次数的惩罚来抑制燃料电池的频繁启动。此外,在 Q 学习中应用模糊逻辑来近似值函数可以解决连续状态和动作空间问题。最后,基于 Python 的训练和测试平台验证了所提出方法在初始状态变化、模型变化和驾驶条件变化条件下的有效性和自学习改进。
现代技术,尤其是人工智能,通过开发智能系统来优化从其一代到最终处置的最短路线,在改善医疗废物管理方面起着至关重要的作用。算法(例如Q学习和深Q网络)提高了运输和处置的效率,同时降低了环境污染的风险。在这项研究中,使用具有3吨能力的均质代理系统对人工智能算法进行培训,以优化封闭的电容车辆路由问题框架内医院之间的路线。将AI与探路技术集成在一起,尤其是混合A*-Deep Q网络方法,尽管最初的挑战,但仍导致了先进的结果。k均值聚类用于将医院分为区域,使代理可以使用深Q网络导航最短路径。分析表明,代理的能力尚未完全利用。这导致了使用Deep Q网络的分数背包动态编程应用,以最大程度地利用能力利用,同时实现最佳路线。由于用于比较算法的有效性的标准是车辆的数量和总车辆容量的利用率,因此发现具有DQN的分数背包脱颖而出,因为它需要最少的车辆数量(4),在该指标中达到0%的损失,因为它与最佳值相匹配。与其他需要5或7辆汽车的算法相比,它分别将车队尺寸降低了20%和42.86%。此外,与其他方法不同,它仅利用了车辆容量的33%至66%,它以100%的价格最大化车辆的容量利用率。但是,这种改进是以距离增加9%的成本,反映了每次旅行服务更多医院所需的较长路线。尽管取消了这种权衡,但该算法能够最大程度地减少车队的大小而充分利用车辆容量,这使其成为这些因素至关重要的情况下的最佳选择。这种方法不仅提高了性能,还提高了环境可持续性,使其成为研究中使用的所有算法中最有效,最具挑战性的解决方案。
广泛采用由BERT和GPT等大型语言模型提供支持的应用程序,突出了社区内部对这种模型可以从培训数据中继承的意外偏见的影响的担忧。为了表现出来,过去的工作报告了LLM的证据,这些LLM扩大了性别刻板印象以及地理和种族偏见。以前的方法集中在数据预处理技术或技术上,这些技术或技术试图直接嵌入以增加资源需求,符号工作以及对足够偏见类型的适用性方面的限制方面,直接嵌入具有很大的缺点。在本文中,我们提出了精炼-LM,这是一种使用模型架构以及偏置型的强化学习对偏差的事后过滤。在包括Distillbert,Bert和Roberta在内的一系列模型中进行的实验表明,所提出的方法(i)在保留语言模型性能的同时,大大减少了刻板印象的偏见; (ii)实现适用于广泛的偏见类型,跨越诸如基于种族,宗教和基于国籍的偏见等环境的概括; (iii)减少所需的培训措施。
