*此表主要用于比较目的,对选择材料非常有帮助。此处列出的数据属于干材料产品特性的正常范围。但是,这些数据并非保证,不应用来设定材料规格限制,也不应单独用作设计基础。本产品数据表以及我们网站上显示的任何数据和规格均提供有关三菱化学先进材料制造和提供的工程塑料产品(以下简称“产品”)的促销和一般信息,并应作为初步指南。与产品有关的所有数据和说明仅供参考。本数据表或我们网站上显示的任何数据和规格均不构成或暗示构成任何法律或合同义务。
*此表主要用于比较目的,对选择材料非常有帮助。此处列出的数据属于干材料产品特性的正常范围。但是,这些数据并非保证,不应用来设定材料规格限制,也不应单独用作设计基础。本产品数据表以及我们网站上显示的任何数据和规格均提供有关三菱化学先进材料制造和提供的工程塑料产品(以下简称“产品”)的促销和一般信息,并应作为初步指南。与产品有关的所有数据和说明仅供参考。本数据表或我们网站上显示的任何数据和规格均不构成或暗示构成任何法律或合同义务。
*此表主要用于比较目的,对选择材料非常有帮助。此处列出的数据属于干材料产品特性的正常范围。但是,这些数据并非保证,不应用来设定材料规格限制,也不应单独用作设计基础。本产品数据表以及我们网站上显示的任何数据和规格均提供有关三菱化学先进材料制造和提供的工程塑料产品(以下简称“产品”)的促销和一般信息,并应作为初步指南。与产品有关的所有数据和说明仅供参考。本数据表或我们网站上显示的任何数据和规格均不构成或暗示构成任何法律或合同义务。
*此表主要用于比较目的,对选择材料非常有帮助。此处列出的数据属于干材料产品特性的正常范围。但是,这些数据并非保证,不应用来设定材料规格限制,也不应单独用作设计基础。本产品数据表以及我们网站上显示的任何数据和规格均提供有关三菱化学先进材料制造和提供的工程塑料产品(以下简称“产品”)的促销和一般信息,并应作为初步指南。与产品有关的所有数据和说明仅供参考。本数据表或我们网站上显示的任何数据和规格均不构成或暗示构成任何法律或合同义务。
摘要 人们对利用超声 (US) 换能器进行非侵入性神经调节治疗,包括低强度经颅聚焦超声刺激 (tFUS) 的兴趣迅速增长。用于 tFUS 的最广泛展示的超声换能器是体压电换能器或电容式微机械换能器 (CMUT),它们需要高压激励才能工作。为了推动超声换能器向小型便携式设备的发展,以便大规模安全地进行 tFUS,人们对具有光束聚焦和控制能力的低压超声换能器阵列很感兴趣。这项工作介绍了使用 1.5 µ m 厚的 Pb(Zr 0.52 Ti 0.48)O3 薄膜(掺杂 2 mol% Nb)的 32 元件相控阵压电微机械超声换能器 (PMUT) 的设计方法、制造和特性。电极/压电/电极堆栈沉积在绝缘体上硅 (SOI) 晶片上,硅器件层厚度为 2 µ m,用作弯曲模式振动的被动弹性层。制造的 32 元件 PMUT 的中心频率为 1.4 MHz。演示了超声波束聚焦和控制(通过波束成形),其中阵列由 14.6 V 方波单极脉冲驱动。PMUT 在焦距为 20 mm 时产生的最大峰峰值聚焦声压输出为 0.44 MPa,轴向和横向分辨率分别为 9.2 mm 和 1 mm。最大压力相当于 1.29 W/cm 2 的空间峰值脉冲平均强度,适用于 tFUS 应用。
摘要我们介绍了利用激光多普勒振动仪(LDV)技术的基于氮化铝(ALN)的压电微压超声传感器(PMUT)的非线性。在谐振频率上工作的PMUT将压电层激发到了强非线性区域。观察到非线性现象,例如频移和非平面外位移幅度。使用压电非线性的数学模型用于分析非线性行为,并随后获得了二阶压电系数。在PMUT非线性产生的大约120个谐波下,在相对较高的电压的单色AC信号下实验获得。此外,可以精心控制谐波的数量。开发了三种不同的应用程序来利用声学混合微型系统和射频(RF)领域中的谐波世代。ALN压电非线性的观察和分析可能有益于基于Aln薄片的PMUT的进一步理解。我们认为,生成的谐波可以在信号处理和调制中的多种应用中使用。
静电传感与驱动:静电传感器与驱动的介绍、平行板电容器、平行板电容器的应用、指状电容器、梳状驱动器的应用。热传感与驱动:介绍、基于热膨胀的传感器与驱动、热电偶、热电阻、应用。磁驱动:基本概念与原理、微磁元件的制造、MEMS 磁驱动的案例研究。
我们提出了在绝缘子底物上硅上制造的微型机械Terahertz(THZ)检测器,并在室温下运行。该设备基于微米尺寸的U形悬臂,其中两个铝制半波偶极天线被沉积。这会在2 - 3:5 THZ频率范围内延伸的吸收。由于硅和铝的不同热膨胀系数,吸收的辐射会诱导悬臂的变形,悬臂的变形是使用1.5 L M Laser二极管光学地读出的。通过用振幅调制2.5 THz量子级联激光器照明检测器,我们在室温和大气压下获得1:5 10 8 pm W 1的响应性,用于悬臂的基本机械弯曲模式。这产生了20 nw = unigrounforkHz p 2.5 thz的噪声当量功率。最后,该模式的低机械质量因子对大约150 kHz带宽的广泛频率响应,热响应时间为2.5 l s。
目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
摘要:电子微型化领域的重大进步已将科学兴趣转向一类新型精密设备,即微机电系统 (MEMS)。具体而言,MEMS 是指通常通过微加工技术生产的微尺度精密设备,该技术结合了机械和电气元件,用于完成通常由宏观系统执行的任务。尽管 MEMS 遍布日常生活的各个方面,但近年来,已有无数研究工作涉及 MEMS 在生物医学领域的应用,特别是在药物合成和输送、显微外科手术、微治疗、诊断和预防、人工器官、基因组合成和测序以及细胞操作和表征方面。MEMS 的巨大潜力在于其尺寸小的优势,包括易于集成、重量轻、功耗低、谐振频率高、可与电气或电子电路集成、由于大规模生产而降低制造成本以及高精度、高灵敏度和高吞吐量。在此背景下,本文旨在通过描述过去几年发展起来的制造主要材料和制造技术及其最常见的生物医学应用来概述 MEMS 技术。