杂环化合物在合成和天然化学空间中普遍存在,是各种应用的基本骨架(Reymond,2015)。杂环化合物意义重大,因为它们对人类、植物和动物至关重要(Katritzky 等人,2010)。在广泛的中小型杂环化合物中,嘧啶核构成了一组重要的药理活性化合物(Das 等人,2022)。该核心的重要性得到了充分的支持,因为它是核碱基(胞嘧啶、胸腺嘧啶、尿嘧啶)以及许多临床批准药物的片段。例如,嘧啶核存在于 5-氟尿嘧啶、伊马替尼(抗癌药)、利匹韦林(抗病毒药)、艾克拉普林(抗生素)、甲氧苄啶(抗菌药)和许多其他药物中(Nammalwar and Bunce,2024 年)。此外,它能够充当生物电子等排体(用于芳香核)并通过非共价相互作用 (NCI) 与生物靶标相互作用,使其成为药物发现计划的绝佳候选者(Nammalwar and Bunce,2024 年)。大量研究表明,嘧啶是开发针对慢性和传染病的药物的有希望的支架(Nadar and Khan,2022 年)。近年来,已鉴定出几种具有抗原虫(Rahman 等人,2024;Singh 等人,2024)、抗炎(Fatima 等人,2023)、抗神经炎症(Manzoor 等人,2023)和碳酸酐酶抑制(Manzoor 等人,2021a)活性的 4,6-二取代嘧啶。一个多世纪前就有报道,阿尔茨海默病 (AD) 现已成为痴呆症最普遍的原因,全球已报告数百万例病例。这导致了巨大的经济和人力负担(Bell,2023;Gustavsson 等人,2023)。到 2050 年,患有 AD 和其他痴呆症的人数估计将超过 1.52 亿(Nichols 等人,2022 年)。为了对抗这种使人衰弱的疾病,研究人员正在采用各种方法,其中一种方法是开发针对一种或多种 AD 机制(例如 β-淀粉样斑块、神经纤维缠结)的小分子(Takahashi 等人,2017 年)。在迄今为止鉴定出的不同类别的小分子中,基于嘧啶的化合物成为一种有希望的候选化合物(Singh 等人,2021 年;Das 等人,2022 年)。例如,Nain 及其同事(Pant 等人,2024 年)报道了一系列取代的
本费萨尔大学,达曼,沙特阿拉伯; 11. 印度科学技术高等研究院 (IASST) 生命科学部,Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 印度; 12. 生物技术系,Aarupadai Veedu 理工学院,Vinayaka Mission 研究基金会,Paiyanoor,钦奈,泰米尔纳德邦,印度; 13. 塔斯马尼亚大学药学与药理学学院,霍巴特,TAS 7001,澳大利亚。通讯作者:Veeranoot Nissapatorn,电子邮件:nissapat@gmail.com 共同作者:SC:siriphon.chi@mail.wu.ac.th,IS:imran.sa@wu.ac.th,SS:suthinee.9938@gmail.com,WM:watcharapong.mi@wu.ac.th,JC:julalak.cu@wu.ac.th,RB:rachasak.bo@mail.wu.ac.th,DAK:dhrubokhan8360@gmail.com,PB:partha_160626@just.edu.bd,MNH:mn.hasan@just.edu.bd,HAT:halt070707@gmail.com,CCS:cristinacsalibay@gmail.com,PW:polrat.wil@mahidol.ac.th,MLP:mlourdespereira@ua.pt, MN:nawwaz@gmail.com,RB:ragini.bodade@iasst.gov.in,SSS:sundarannauniv85@gmail.com,AKP:alok.paul@utas.edu.au 收讫日期:01-06-2024,接受日期:12-11-2024,在线发表日期:18-12-2024
tau蛋白是一种由MAPT基因编码的高度可溶的微管相关蛋白(MAP)。tau蛋白是一种基本蛋白。作为地图家族的成员,tau蛋白主要作用于轴突的远端,以维持微管的稳定性和柔韧性。tau蛋白与微管蛋白相互作用以稳定微管,同时驱动微管内的小管蛋白组装。tau蛋白通过异构化和磷酸化控制微管的稳定性。tau蛋白参与调节轴突运输和核功能以保护DNA完整性。与肌动蛋白细胞骨架相互作用以促进肌动蛋白丝的形成;并通过与FYN相互作用来调节NMDA受体信号通路。tau的磷酸化受许多激酶的调节,包括PKN,丝氨酸/苏氨酸激酶,其活化会导致微管组织破坏。高磷酸化TAU在神经元中的积累会引起神经原纤维变性,这与各种神经退行性疾病(如AD和PD)有关。
生成模型(例如Di usion模型)在近年来已取得了显着的进步,从而使能够综合各个领域的高质量现实数据。在这里,探索了在超分辨率显微镜图像上的分解模型的适应和训练。表明,生成的图像类似于实验图像,并且生成过程不会从训练集中的现有图像中显示出很大程度的记忆。为了证明生成模型在数据增强中的有用性,将基于基于学习的高分辨率数据训练的基于深度学习的单位图(SISR)方法的性能与单独使用实验图像或数学建模产生的图像进行了比较。使用一些实验图像,改进了重建图像的重建质量和空间分辨率,从而展示了分解模型图像产生的潜力,以克服显微镜图像收集和注释的限制。最后,该管道公开可用,可在线运行和用户友好,以使研究人员能够生成自己的合成显微镜数据。这项工作证明了显微镜任务的生成分歧模型的潜在贡献,并为其在该领域的未来应用铺平了道路。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月7日发布。 https://doi.org/10.1101/2023.12.06.569572 doi:biorxiv preprint
我们应该指出,微管组装-解组装动力学需要微管蛋白(微管的主要成分)与 GTP 结合,并将该鸟苷三磷酸 (GTP) 水解为鸟苷二磷酸 (GDP)(有关综述,例如,请参阅 Avila,1990 年;Beckett 和 Voth,2023 年)。脑微管蛋白含有特定的 β 亚基同型,这种同型几乎只存在于脊索动物的神经元中(Sullivan 和 Cleveland,1984 年)。此外,该神经元 β 亚基存在特定的翻译后磷酸化,而在其他 β 微管蛋白同型中未发现这种修饰(Diaz-Nido 等人,1990 年)。由微管蛋白组成的微管在脑中非常丰富。通过使用灵敏的放射免疫分析法测量猪不同器官(包括大脑)胞质中的微管蛋白水平,发现微管蛋白占猪脑总可溶性蛋白质的 20±5%(Hiller 和 Weber,1978;Diez 等,1984)。值得注意的是,在外周组织中发现的微管蛋白的量比在大脑中发现的微管蛋白的量低 10 到 20 倍。此外,脑微管含有几种微管相关蛋白(MAP),可稳定这些聚合物,包括 tau 蛋白(Avila,1990)。脑微管有三个特定特征可将其与其他来源的微管区分开来:(a)它们存在于
生成模型(例如扩散模型)在近年来已取得了重大进步,从而使能够在各个领域综合高质量的现实数据。在这里,我们探讨了从公开可用数据库的超分辨率显微镜图像的扩散模型的适应和培训。我们表明,生成的图像类似于实验图像,并且生成过程不会记住训练集中的现有图像。此外,我们比较了使用我们生成的高分辨率数据与使用样本数学建模获得的高分辨率数据训练的基于深度学习的反卷积方法的性能。使用一个小的实际训练数据集,我们可以根据空间分辨率获得出色的重建质量,从而表明了准确的虚拟图像生成的潜力,以克服收集和注释图像数据的局限性进行培训。最后,我们使我们的管道公开可用,可在线运行和用户友好,以使研究人员能够生成自己的合成显微镜数据。这项工作证明了生成扩散模型对显微镜任务的潜在贡献,并为其在该领域的未来应用铺平了道路。
目的:微管疾病代表由微管蛋白基因中的变异引起的一组疾病,这些疾病具有广泛的脑畸形。进行了这项研究是为了洞悉韩国小儿种群中微调蛋白质的表型和遗传光谱。方法:在2011年6月和2021年12月在儿科神经病学诊所进行基因检测的个体中,回顾了15例微管蛋白基因变异的患者。临床特征,遗传信息和大脑成像发现进行了回顾性回顾。结果:患者的遗传光谱包括TUBA1A(n = 5,33.3%),tubb4a(n = 6,40.0%),tubb3(n = 2,13.3%),tubb(n = 1,6.7%)和tubb2a(n = 1,6.7%)。确定了两个新型突变:A c.497a> g; p。(lys166arg)tuba1a中的变体和c.907g> c; p。(ALA303PRO)TUBB中的变体。所有15名患者均表现出发育延迟,严重程度广泛。其他共同的表现包括小头畸形(n = 10; 66.7%)和sei Zures(n = 9; 60%)。对神经影像数据的综述揭示了一系列基因型特异性和基因型重叠的发现。在TUBA1A突变(n = 5)的情况下,四名患者(80%)出现了pachygyria和Polymicrogyria,而三名(60%)的患者表现出Cere Bellar发育不全和发育不良。所有TUBB4A变异的患者(n = 6)均表现出低霉素的症状,三名(50%)均患有小脑发育不良。结论:这项研究代表了韩国小儿种群中与微管蛋白质病有关的微管蛋白基因突变的首次队列分析。表明,这些突变可以促进各种神经发育和神经影像学发现,应在相关临床方面的鉴别诊断中考虑。