结果:在心室编程刺激期间,DB/DB和HFHS喂养的小鼠显示出VT和T-WAVE替代品的增加。这些小鼠的心肌细胞表现出早期造影后的表现。 这两种模型均表明对副交感神经抑制的心率反应降低,表明自主神经功能障碍。 CGMP介导心脏副交感神经刺激,在DB/DB和HFHS喂养的小鼠的LV中降低。 相反,用可溶性鸟苷酸环化酶刺激(Riociguat)或磷酸二酯酶5抑制(sildenafil)降低VT诱导性的CGMP增强。 PKG1 lzm小鼠具有正常的自主响应性,但VT诱导性过高。 dB/db,HFHS和LZM小鼠分别表现出多活化的心肌糖原合酶三酶3βGSK3)。 此外,用TWS119抑制GSK3废除了这些小鼠的诱导VT。 舒张性胞质Ca 2+的重新摄取坡度在所有模型的心肌细胞中降低,而TWS119的GSK3抑制作用却反转了这种效果。 在HFHS-FED和LZM小鼠中抑制肌胞浆/内质网ca 2+ ATPase 2A-介导的Ca 2+再摄取的磷酸/磷酸磷脂(PLB)。心肌细胞表现出早期造影后的表现。这两种模型均表明对副交感神经抑制的心率反应降低,表明自主神经功能障碍。CGMP介导心脏副交感神经刺激,在DB/DB和HFHS喂养的小鼠的LV中降低。 相反,用可溶性鸟苷酸环化酶刺激(Riociguat)或磷酸二酯酶5抑制(sildenafil)降低VT诱导性的CGMP增强。 PKG1 lzm小鼠具有正常的自主响应性,但VT诱导性过高。 dB/db,HFHS和LZM小鼠分别表现出多活化的心肌糖原合酶三酶3βGSK3)。 此外,用TWS119抑制GSK3废除了这些小鼠的诱导VT。 舒张性胞质Ca 2+的重新摄取坡度在所有模型的心肌细胞中降低,而TWS119的GSK3抑制作用却反转了这种效果。 在HFHS-FED和LZM小鼠中抑制肌胞浆/内质网ca 2+ ATPase 2A-介导的Ca 2+再摄取的磷酸/磷酸磷脂(PLB)。CGMP介导心脏副交感神经刺激,在DB/DB和HFHS喂养的小鼠的LV中降低。相反,用可溶性鸟苷酸环化酶刺激(Riociguat)或磷酸二酯酶5抑制(sildenafil)降低VT诱导性的CGMP增强。PKG1 lzm小鼠具有正常的自主响应性,但VT诱导性过高。dB/db,HFHS和LZM小鼠分别表现出多活化的心肌糖原合酶三酶3βGSK3)。此外,用TWS119抑制GSK3废除了这些小鼠的诱导VT。舒张性胞质Ca 2+的重新摄取坡度在所有模型的心肌细胞中降低,而TWS119的GSK3抑制作用却反转了这种效果。在HFHS-FED和LZM小鼠中抑制肌胞浆/内质网ca 2+ ATPase 2A-介导的Ca 2+再摄取的磷酸/磷酸磷脂(PLB)。
众所周知,长期接触微重力会导致心血管不良影响,并增加了长期心血管事件的风险。这些变化类似于年龄相关的生理改变,在暴露于微重力的健康个体中迅速发生。该项目旨在使用源自HIPSC和Organoid Technologies的人类心肌细胞来阐明该事件的起源的生物学因素。关键字
摘要:线粒体功能障碍是心力衰竭的特征,导致生物能储备能力逐渐下降,包括能量产生从线粒体脂肪酸氧化转移到糖酵解途径的转变。这种心肌细胞的适应性过程并不代表增加能源供应并恢复心力衰竭能量稳态的有效策略,从而导致了恶性循环和疾病的发展。增加的氧化应激会导致心肌细胞凋亡,钙稳态失调,蛋白质和脂质的损伤,线粒体DNA的泄漏以及炎症反应,最后刺激不同的信号通路,从而导致心脏重塑和失败。此外,与血管紧张素II,内皮素1和交感神经肾上腺素能过度活化发生的平行神经激素失调,发生在心力衰竭中,刺激心室心肌细胞肥大并加剧细胞损伤。在这篇综述中,我们将讨论与线粒体功能障碍相关的病理生理机制,这些机制主要取决于增加氧化应激和膜动力学动力学的扰动,并且与心力衰竭发育和进展有关。我们还将概述线粒体作为心力衰竭管理和恢复过程中有吸引力的治疗靶标的潜在影响。
用心肌细胞特异性FOXO1缺失在人类细胞和糖尿病小鼠中进行分析表明,FOXO1直接绑定在KLF5启动子上,并增加了KLF5的表达。具有心肌细胞特异性FOXO1缺失的糖尿病小鼠的心脏KLF5表达较低,并受到DBCM的保护。遗传学,药理增益和KLF5功能方法的丧失和小鼠AAV介导的KLF5递送表明KLF5诱导了DBCM。因此,当救出KLF5表达时,消除了心肌细胞FOXO1在DBCM中的保护作用。同样,组成型心肌细胞特异性KLF5过表达引起心脏功能障碍。klf5通过直接结合NADPH氧化酶(NOX)4启动子和NOX4表达诱导引起氧化应激。这伴随着心脏神经酰胺的积累。药理学或遗传KLF5抑制减轻了超氧化物的形成,可防止神经酰胺的积累和改善糖尿病小鼠的心脏功能。
配体(PD-L1)与肿瘤细胞上的相应配体结合。在临床实践中,ICI用于多种癌症,包括不可切除或转移性黑色素瘤,非小细胞肺癌,霍奇金的淋巴瘤,头颈鳞状细胞癌,尿路上皮癌,胃癌,胃癌和肝癌。ICI可能会导致免疫相关的毒性表现出来,这些毒性可能会严重影响ICI管理后的任何器官。常见的不良反应包括皮肤,肾脏,肺和胃肠道,肝炎,肺炎,肾炎,肌炎和皮炎。大多数这些毒性都是可逆的,可以通过糖皮质激素治疗来缓解。2较少观察到。但是,严重的心脏免疫相关事件(IRAE),例如心肌,心包炎,血管炎,心律不齐,可以很容易地被忽略。3,4学者发现肿瘤细胞和心肌细胞具有相似的淋巴细胞特性,并与T细胞回收体共享抗原。5据推测,与心肌细胞中ICI相关的心脏毒性与PD-L1和CTLA-4表达有关。pd-L1抑制剂和CTLA-4抑制剂将导致嗜中性粒细胞,巨噬细胞浸润后,会导致心脏组织中的T细胞累积并增强T细胞反应。6,7因此,伤害
摘要astaxanthin(ASX)是一种天然抗氧化剂,对各种人类的预防和治疗作用。但是,ASX在心脏肥大及其潜在的分子机制中的作用尚未清楚。心肌细胞(AC16)与血管紧张素II(ANG-II)一起模仿心脏肥大细胞模型。通过蛋白质印迹分析确定肥大基因,GATA4和甲基转移酶样3(METTL3)的蛋白质水平。使用免疫荧光染色评估细胞大小。通过定量实时PCR分析了CRIC_0078450,miR-338-3p和GATA4的表达。此外,通过双速度酶酶报告基因和RIP分析确认了miR-338-3p和Circ_0078450或Circ_0078450或GATA4之间的相互作用,并且通过MERIP和RIP分析验证了Circ_0078450对MetTL3的调节。ASX降低了ANG-II诱导的AC16细胞中的肥大基因蛋白表达和细胞大小。Circ_ 0078450在ANG-II处理下促进了ASX降低ANG-II诱导的AC16细胞中的Circ_0078450。CRIC_0078450可以将miR-338-3p播放以积极调节GATA4表达,而GATA4过表达推翻了Circ_0078450敲低对ANG-II诱导的心肌细胞肥大的抑制作用。此外,ASX对ANG-II诱导的心肌细胞肥大的抑制作用可能会被Circ_0078450或GATA4过表达逆转。此外,METTL3介导了电路0078450的M6A甲基化,以增强Circ_0078450的表达。此外,METTL3敲低通过抑制Circ_0078450的表达来抑制ANG-II诱导的CAR-II诱导的Car-二肌细胞肥大。我们的数据表明,通过调节METTL3/CRIC_0078450/mir-338-3p/gata4轴来抑制心脏肥大。(INT心脏J 2024; 65:119-127)关键词:血管紧张素-II,AC16细胞,M6A甲基化,ANP,BNP,BNP,β-MHC
心肌细胞和成纤维细胞蛋白质组景观的抽象病理重编程驱动心脏纤维化的起始和进展。尽管功能障碍性心肌细胞的分泌成为病理成纤维细胞重编程的重要驱动力,但我们对下游分子娱乐体的理解仍然有限。在这里,我们表明心脏成纤维细胞激活(αSMA +)和由TGFβ刺激的心肌细胞的分泌介导的氧化应激与其蛋白质组和磷酸蛋白酶景观的深刻重新编码有关。在成纤维细胞全局蛋白质组中,蛋白质的失调引起的失调与细胞外基质,蛋白质定位/代谢,KEAP1-NFE2L2途径,溶酶体,碳水化合物,碳水化合物的代谢和转录调节。激酶底物富集分析磷酸肽在此重塑过程中激酶(CK2,CDK2,PKC,GSK3B)的潜在作用。 我们验证了酪蛋白激酶2(CK2)在分泌理论治疗的成纤维细胞中的上调活性,药理学CK2抑制剂TBB(4,5,6,7-四氢苯甲酰苯二唑)显着消除了纤维细胞激活和氧化应激。 我们的数据提供了对心肌细胞对心脏成纤维细胞串扰的分子见解,以及CK2在调节心脏成纤维细胞激活和氧化应激中的潜在作用。激酶底物富集分析磷酸肽在此重塑过程中激酶(CK2,CDK2,PKC,GSK3B)的潜在作用。我们验证了酪蛋白激酶2(CK2)在分泌理论治疗的成纤维细胞中的上调活性,药理学CK2抑制剂TBB(4,5,6,7-四氢苯甲酰苯二唑)显着消除了纤维细胞激活和氧化应激。我们的数据提供了对心肌细胞对心脏成纤维细胞串扰的分子见解,以及CK2在调节心脏成纤维细胞激活和氧化应激中的潜在作用。
线粒体功能障碍:o PI3K-G的激活减少线粒体o PI3K-C2的损失a触发过早的心肌细胞衰老的衰老/微循环损伤,通过ROS产生和通过DNA损伤,氧化不能,氧化不能,氧化不能,氧化不能,氧气损伤,氧化不能,氧化不良,氧代谢氧化应激
第一作者 Danielle Medina-Hernández 强调说:“我们的研究表明,恩格列净可防止心肌细胞结构改变,如细胞萎缩和 DNA 损伤。这些结果强调了 SGLT2 抑制剂不仅在治疗心力衰竭方面的潜力,而且可以作为接受与严重心血管副作用相关的治疗的癌症患者的预防疗法。”
方法:再次招募了来自原始关联研究队列的六名表型良好、接受阿霉素治疗的儿科患者,并生成了人类诱导多能干细胞衍生的心肌细胞。然后使用细胞活力、活化 caspase 3/7 和阿霉素摄取测定法来表征患者特异性阿霉素诱导的心脏毒性 (DIC)。然后使用 CRISPR/Cas9(成簇规律间隔短回文重复序列/CRISPR 相关蛋白 9)在同源人类诱导多能干细胞衍生的心肌细胞中过度表达和敲除 SLC28A3,以探究 SLC28A3 在 DIC 中的作用。在对 SLC28A3 进行重新测序和扩展的计算机单倍型和功能分析后,完成了 SLC28A3 基因座的精细定位。使用胞嘧啶碱基编辑器对潜在致病变异进行基因组编辑。使用慢病毒质粒转导进行 SLC28A3-AS1 过表达,并在核糖体 RNA 消耗后使用链状 RNA 测序进行验证。使用 Prestwick 化学库 (n = 1200) 进行药物筛选,然后在小鼠中进行体内验证。还在 8 种癌细胞系中研究了地昔帕明对阿霉素细胞毒性的影响。