Prime editing 是最近报道的一种基因组编辑工具,它使用与逆转录酶融合的切口酶 cas9,直接在目标位点合成所需的编辑。在这里,我们探索了 prime editing 在人类类器官中的应用。常见的 TP53 突变可以在人类成体干细胞衍生的结肠类器官中正确建模,效率高达 25%,在肝细胞类器官中高达 97%。接下来,我们功能性地修复了囊性纤维化 CFTR-F508del 突变,并将 prime editing 与 CRISPR/Cas9 介导的同源定向修复和腺嘌呤碱基编辑在 CFTR-R785* 突变上进行了比较。对 prime editing 修复的类器官进行全基因组测序未发现可检测到的脱靶效应。尽管在目标位点遇到不同的编辑效率和不良突变,这些结果强调了主要编辑在建模致癌突变方面的广泛适用性,并展示了该技术的潜在临床应用,有待进一步优化。
摘要 组合信号是指导情境相关细胞行为的关键。在胚胎发育、成体稳态和疾病期间,骨形态发生蛋白 (BMP) 充当二聚体来指导特定的细胞反应。BMP 配体可以形成同二聚体或异二聚体;然而,获得每种形式的内源性定位和功能的直接证据已被证明具有挑战性。在这里,我们利用精确的基因组编辑和通过蛋白质结合剂进行的直接蛋白质操作来剖析果蝇翅成虫盘中 BMP 同二聚体和异二聚体的存在和功能相关性。这种方法原位揭示了 Dpp (BMP2/4)/Gbb (BMP5/6/7/8) 异二聚体的存在。我们发现,尽管 Gbb 由翅成虫盘的所有细胞产生,但仅由表达 Dpp 的细胞分泌。 Dpp 和 Gbb 形成异二聚体的梯度,而在内源性生理条件下,Dpp 和 Gbb 同二聚体均不明显。我们发现异二聚体的形成对于在发育中的翅膀中获得最佳信号传导和长距离 BMP 分布至关重要。这些结果表明 Dpp/Gbb 异二聚体是上皮模式形成和生长所需的活性信号。
创伤引起的关节软骨缺损很少能自愈,容易引发创伤后骨关节炎。在目前的自体细胞治疗中,再生过程常常受到成体细胞较差的再生能力和受伤关节的炎症状态的阻碍。由于缺乏理想的软骨损伤治疗方案,作者们试图通过组织工程来构建一种更能抵抗炎症的软骨组织。在多指软骨细胞中,成簇的规律间隔的短回文重复序列 (CRISPR)-Cas9 敲除 TGF- 𝜷 激活激酶 1 (TAK1) 基因可提供多价保护,以抵御激活促炎和分解代谢 NF- 𝜿 B 通路的信号。 TAK1-KO 软骨细胞被封装到透明质酸水凝胶中,沉积大量软骨细胞外基质蛋白,并促进与天然软骨的整合,即使在促炎条件下也是如此。此外,当植入体内时,与野生型相比,侵入软骨的促炎性 M1 巨噬细胞较少,这可能是由于 TAK1-KO 多指软骨细胞分泌的细胞因子水平较低。因此,工程软骨代表了创造用于再生医学的更有效和功能性组织的新范式转变。
在过去的 20 年里,间充质干细胞 (MSC) 作为一种治疗多种疾病的独特方法引起了广泛关注。MSC 具有自我更新和多谱系分化能力、免疫调节和抗炎特性,使其能够在再生医学中发挥作用。此外,MSC 的致瘤性低且具有免疫特权,这使得同种异体 MSC 可用于治疗,而无需直接从患者身上采集 MSC。诱导性多能干细胞 (iPSC) 可以通过基因重编程从成体细胞中生成,并异位表达特定的多能因子。iPS 技术的进步避免了破坏胚胎来制造多能细胞,使其免于伦理问题。iPSC 可以自我更新并发展成大量特化细胞,使其成为再生医学的有用资源,因为它们可以从任何人类来源产生。 MSC 还被用于治疗感染 SARS-CoV-2 病毒的个体。由于 MSC 具有高致瘤性(可引发致癌转化),因此其临床试验比 iPSC 多。在这篇综述中,我们讨论了间充质干细胞和诱导性多能干细胞的概况。我们简要介绍了使用 MSC 和 iPSC 的治疗方法和 COVID-19 相关疾病。
摘要介绍股骨头缺血性坏死 (AVN) 是一种以血液供应中断导致骨组织死亡为特征的疾病,其治疗面临重大挑战。骨生物学领域的最新进展,包括使用自体成体活培养成骨细胞 (AALCO) 结合核心减压,为治疗 AVN 提供了一种新方法。本研究评估了这种治疗方式在改善功能结果和阻止疾病进展方面的效果。材料和方法这项回顾性观察研究涵盖了 2020 年至 2023 年间接受治疗的 30 名特发性股骨头 AVN(I 至 III 级)患者,这些患者对保守治疗无反应。根据特定标准(包括年龄、继发性 AVN 原因和某些健康状况)排除患者。治疗包括在脊柱麻醉下使用 OSSGROW® 进行两阶段手术以生成 AALCO。术后护理重点包括早期活动、预防深静脉血栓 (DVT) 和避免使用非甾体抗炎药 (NSAID)。疗效指标采用疼痛视觉模拟量表 (VAS)、改良 Harris 髋关节评分以及长达 36 个月的年度 MRI 成像进行评估。
我们需要新颖的策略来针对癌症的复杂性,尤其是转移性疾病的复杂性。作为这种复杂性的一个例子,某些组织是转移的特别好客的环境,而其他组织则不含肥沃的微环境来支持癌细胞生长。持续的证据表明,组织的细胞外基质(ECM)是支持癌细胞生长在原发性和次要组织部位的必要因素之一。对癌症转移的研究主要集中在二维组织培养聚苯乙烯板上各种细胞因子和生长因子环境中肿瘤细胞的分子适应。内部成像已经改变了我们实时观察肿瘤细胞侵袭,侵入,渗出和生长的能力。由于支持肿瘤微环境中所有细胞的间质ECM在典型插入成像的可能窗口之外随时间尺度变化,因此生物工具不断开发简单和复杂的体外控制环境,以研究肿瘤(和其他)与该矩阵的细胞相互作用。从这个角度来看,我们专注于负责维护肿瘤器官的病理稳态,与癌症相关的成纤维细胞(CAF)及其自我产生的ECM。后者以及肿瘤和其他细胞分泌的因素,构成“肿瘤生成症”。我们分享了建模该动态CAF/ECM单元,可用工具和技术的挑战和机会,以及如何重塑肿瘤母体(例如,通过ECM蛋白酶)。我们认为,越来越多的有关肿瘤生成体动力学的信息可能会导致该领域成为基因组外科医学的替代策略。
根据预测翻译蛋白的重组版本的酶活性,人类二氢叶酸还原酶 2 ( DHFR2 ) 基因已被归因于功能性作用。然而,其体内功能仍不清楚。DHFR2 与其亲本同源物 DHFR 之间的高氨基酸序列同一性 (92%) 使内源性蛋白质的分析具有挑战性。本文介绍了一种针对几种人类细胞系和组织类型的靶向质谱蛋白质组学方法,以识别 DHFR2 特异性肽作为其翻译的证据。我们提供了确凿的证据,表明线粒体中的 DHFR2 活性实际上是由 DHFR 而不是 DHFR2 介导的。 Ribo-seq 数据分析和使用蔗糖垫进行的核糖体关联实验评估表明,Ensembl 注释的 DHFR2 的两个主要 mRNA 异构体 201 和 202 与核糖体存在不同的关联。这表明它在 RNA 和蛋白质水平上都发挥着功能性作用。然而,尽管 DHFR2 的各种 RNA 异构体相对丰富,但我们无法在大多数细胞类型中检测到可检测水平的 DHFR2 蛋白。我们确实在胚胎心脏中检测到了 DHFR2 特异性肽,这表明该蛋白质可能在胚胎发生过程中发挥特殊作用。我们认为 DHFR2 基因在成体细胞中的主要功能很可能出现在 RNA 水平上。
描述 DLL1(Delta 样蛋白 1)是一种 I 型膜蛋白,属于 Notch 配体的 DSL(Delta/Serrate/Lag2)家族。它是胚胎发育和成体干细胞维持所必需的。哺乳动物中有五种 Notch 配体(DLL1、DLL3、DLL4、Jagged-1 和 Jagged-2)和四种 Notch 受体(Notch-1 至 Notch-4)。DLL1 广泛表达,小鼠 DLL1 与人类和大鼠 DLL1 的氨基酸序列同一性分别为 91% 和 95%。Notch 受体与其配体的相互作用导致 ADAM(一种解整合素和金属蛋白酶)和早老素/γ 分泌酶依次进行蛋白水解,导致细胞外结构域脱落并产生可溶性 ICD(细胞内结构域)信号片段,这些片段转位到细胞核中与转录因子相互作用。 DLL1 在其细胞外结构域中以与 Notch 受体类似的方式由 ADAM10 进行蛋白水解加工,其 ICD 可能参与双向信号传导。DLL1 诱导的 Notch 信号通过其对分化和增殖的影响来调节细胞谱系、细胞特化、细胞模式和形态形成。DLL1 在大脑发育的许多不同层面上发挥着重要作用。在小脑发育过程中,DLL1 是伯格曼神经胶质层形成及其形态成熟所必需的。在新皮质发育过程中,DLL1- Notch 信号协调祖细胞在径向和带状边界上的分裂和分化。
摘要 越来越多的证据表明,经颅低强度超声可能成为一种治疗脑部疾病的非侵入性神经调节工具。然而,其潜在机制仍然难以捉摸,而且大多数动物模型研究都采用了高强度超声,而这些超声不能安全地用于人体。在这里,我们展示了低强度超声能够激活小鼠大脑中的神经元,并且重复的超声刺激会导致特定大脑区域的成体神经发生。体外钙成像研究表明,激活培养的皮质神经元需要一种特定的超声刺激模式,该模式结合超声诱导的压力和声流机械转导。ASIC1a 和细胞骨架蛋白参与了低强度超声介导的机械转导和培养的神经元活化,而 ASIC1a 阻断剂和细胞骨架修饰剂可以抑制这种作用。相反,抑制参与双层模型机械传导的机械敏感通道(如 Piezo 或 TRP 蛋白)并不能有效抑制超声介导的神经元激活。ASIC1a 基因缺失显著降低了小鼠大脑中 ASIC1a 介导的超声效应,例如 ERK 磷酸化的即时反应和 DCX 标记的神经发生。整理的数据表明,ASIC1a 是参与调节小鼠大脑神经激活的低强度超声机械信号传导的分子决定因素。
分化成多个细胞群,这些细胞群在三维 (3D) 培养中自组织或组装成类似体内微器官的组织。Yoshiki Sasai 研究小组和 Hans Cleves 研究小组首次证明,在 3D 条件下培养时,多能干细胞 (PSC) 和成体干细胞 (ASC) 能够自组织成类似微器官的结构。Sasai 研究小组证明,3D 培养中的小鼠胚胎干细胞 (ESC) 聚集体能够自主产生极化的皮质神经上皮、优雅的视杯和垂体前叶结构 [1-3]。同时,Cleves 小组的 Sato 等人证明在 3D 基质胶中培养的单个 Lgr5 阳性小鼠肠干细胞能够形成肠隐窝 - 绒毛结构 [4]。这些工作证明了体外培养细胞卓越的自组织能力,并开辟了类器官领域的新道路。在过去十年中,类器官领域得到了蓬勃发展 [5, 6]。自 Sasai、Clevers、Sato 及其同事的研究以来,已报道了大多数小鼠和人类器官的类器官,包括大脑、肠、胃、肝脏、肺、肾、血管和心脏 [7 – 13]。在本综述中,我们将重点介绍哺乳动物(特别是人类)早期发育的类器官,这些类器官也因结构不同而被称为胚状体、胚芽状体或原肠胚状体。我们还将总体讨论类器官领域的未来发展方向。