(MSLR 2022)数据集(22k 组医学文章摘要和相应的文献综述)。这些数据集属于科学/医学领域(FAERS 相邻),常用于摘要训练和基准测试。训练模型来总结长篇(或多篇)文档提出了独特的挑战。处理长文本序列的默认行为是截断它们以适合模型的最大上下文窗口(对于大多数 Transformer,512 个标记/~400 个单词)。截断会消除文档后面提供的任何信息(或一系列文档中的整个文档)。即使对于设计为接受更长输入的模型(如 longformer),用于训练的硬件也会限制上下文窗口的长度。对于我们的微调运行,我们丢弃了所有非常短/长的示例,并将任何长度超过 ~4000 个标记的输入分块。我们对此数据进行了微调,将最大输入长度限制为 4096 个标记,持续 10 个时期。
搜索提示:不要忘记复数拼写。示例:导师计划或导师。高级搜索提示:通过将此符号(*)放在主字上来使用截断;例如,导师*将检索所有以下所有内容:导师,导师,指导,指导。不要忘记其他拼写,例如英国血液学拼写与血液学。
我们已尽最大努力提供准确的接收器信息列表,但 GPS World 对公司提供的信息的准确性或所列设备的性能不承担任何责任。在某些情况下,数据必须缩写或截断以适应可用空间。如对特定单位有疑问,请直接联系制造商。若要在 2017 年接收器调查中列出,请发送电子邮件至 gpsworld@gpsworld.com 。
粒子加速器物理与建模 II 2V 1U 加速器将被视为一个抽象的动态系统,我们将讨论非线性对带电粒子束动力学的影响。我们将介绍 Lie 方法与微分代数 (DA) 和截断幂级数 (TPS) 的结合。在第二部分中,我们将讨论使用神经网络和多项式混沌展开来构建此类非线性动态系统的替代模型。
使用在线列表和工具 可以使用扩展、相邻或索引在线命令来获取可搜索主题词列表以及当前帖子数。这些主题词可能包括标题词、标题词和摘要词,因此可能包括本手册中未收录的词。除非另有说明,否则搜索将包括所有类别的词(即所有词都在基本索引中),或者搜索可能仅限于特定字段,例如标题词。适当时可使用截断。
在此建模任务的第二部分中,散射边界条件用于截断模拟域。通常,当使用散射边界条件时,假定到达边界的散射波在靠近边界的正常方向上传播的边界传播。但是,当我们进行模式分析时,我们知道该模式还将在平面外向传播,这与应用散射边界条件的边界相切。因此,沿正常方向的波矢量分量为
创建粒度分布的最准确方法是单独测量每个粒子。AccuSizer 系统对通过传感器检测区的每个粒子进行计数和尺寸测量,并一次构建一个粒子的分布。这样可以创建准确的高分辨率结果。图 4 显示了通过 45 µm 筛子的样品。蓝色 AccuSizer SPOS 系统结果清楚地显示了截断分布,而红色激光衍射结果将分布扩大到包括不存在的 >100 µm 的粒子。
摘要。天气预报需要立即决策的确定性结果,也需要评估不可能的概率结果。但是,确定性模型可能无法完全捕获天气可能性的规范,概率预测可能缺乏特定计划所需的精确度,因为该领域旨在提高准确性和可靠性,因此面临重大挑战。在本文中,我们提出了基于确定性指导的扩散模型(DGDM),以利用确定性和概率天气前铸造模型的好处。DGDM集成了确定性分支和扩散模型作为概率分支,以提高预测精度,同时提供概率预测。此外,我们还引入了序列方差时间表,该序列方差时间表从不久的将来到遥远的未来进行了预测。此外,我们通过使用确定性分支的结果来提出截断的扩散,以截断差异模型的反向过程以控制不确定性。我们在移动MNIST上对DGDM进行了广泛的分析。此外,我们评估了Pacific Northwest风暴(PNW)typhoon卫星数据集的DGDM的有效性,用于区域极端天气预测,以及在WeatherBench数据集上用于全球天气预测数据集。实验结果表明,DGDM不仅在全球预测中,而且在区域预测方案中都能达到最先进的绩效。该代码可在以下网址提供:https://github.com/donggeun-yoon/dgdm。
尽管最近在提高慢病毒基因疗法的疗效方面取得了进展,但相当一部分生产的载体含有不完整且可能无功能的 RNA 基因组。这可能会破坏慢病毒的基因传递,并增加制造成本,必须加以改进以促进慢病毒基因疗法的广泛临床实施。在这里,我们比较了三种长读测序技术检测载体设计问题的能力,并确定纳米孔直接 RNA 测序是最强大的。我们展示了这种方法如何识别和量化由隐蔽剪接和多聚腺苷酸化位点引起的不完整 RNA,包括广泛使用的土拨鼠肝炎病毒转录后调控元件 (WPRE) 中的潜在隐蔽多聚腺苷酸化位点。使用慢病毒 RNA 的人工多聚腺苷酸化,我们还在分析的慢病毒载体中识别出多个发夹相关截断,这些截断占检测到的 RNA 片段的大部分。最后,我们表明这些见解可用于优化慢病毒载体设计。总之,纳米孔直接 RNA 测序是慢病毒载体质量控制和优化的有力工具,可能有助于改进慢病毒制造,从而开发更高质量的慢病毒基因疗法。
高通量的短读RNA-seq协议通常会产生成对的末端读数,其中片段的中部未延迟。我们探索是否可以在没有参考基因组的情况下从测序的两个末端重建全长片段,这是我们称为从头桥接的问题。解决此问题提供了更长,更具信息性的RNA-seq读取,并有益于下游RNA-Seq分析,例如转录本组装,表达量化和拼接不同分析。然而,由于替代剪接,成绩单噪声和测序错误,从头桥接是一项挑战且复杂的任务。尚不清楚数据是否为准确的桥接提供了SU CIENT信息,更不用说确定真正桥梁的E CIENT算法了。方法已被提出在存在参考基因组(称为基于参考的桥接)的情况下桥接成对的末端读取,但是由于后者使用的基础组合de Bruijn图(CDBG),算法远离从头桥接的缩放范围,后者通常包含数百万个角色和Edges和Edges和Edges和Edges。我们为此问题设计了一种新的截断的Dijk- Stra的算法,并提出了一种新型算法,该算法将最短的路径树重复使用,以避免从scratch中运行所有顶点的截断的di-jkstra的算法,以进一步加速。这些创新技术会产生可扩展的算法,这些算法可以在CDBG中桥接所有配对端的读数,并具有数百万个顶点。我们的实验表明,成对的RNA-seq读数可以在很大程度上准确地桥接。所得工具可在https://github.com/shao-group/rnabridge-denovo上免费获得。