我们研究了通过正常超导体 (NS) 结的传输,该结由具有螺旋边缘态的量子自旋霍尔 (QSH) 系统和具有手性马约拉纳边缘模式的二维 (2D) 手性拓扑超导体 (TSC) 制成。我们采用二维扩展四带模型,用于磁场 (塞曼) 中受 s 波超导影响的 HgTe 基量子阱。我们使用 Bogoliubov-de Gennes 散射形式表明,该结构提供了 2D TSC 的显著传输信号。作为样品宽度 (或费米能量) 的函数,电导共振经历 2 e 2 / h (非平凡相) 和 4 e 2 / h 平台期 (平凡相) 的序列,随着样品宽度变大,它们落入非零陈数 (2D 极限) 的区域内。这些特征是 QSH 效应和 TSC 拓扑性质的体现。
手性是一种基本的不对称性质,用来描述可与其镜像区分开来的系统,它仍然是现代科学关注的焦点 1 – 4 ,手性材料有多种应用 5 – 8 。手性拓扑结构为新一代手性材料奠定了基础,其中手性扩展到纳米和微米尺度。在胆甾型液晶中观察到了非均匀手性态、螺旋、蓝色和扭曲晶界 (TGB) 相 9、10 。Skyrmion 是矢量序参数(如磁化强度或极化密度)的手性结构,由于其在信息技术中的潜在应用,在过去十年中在磁性材料中引起了相当大的关注 11 – 13。然而,这些材料的一个显着特征是特定的非手性对称性,这种对称性由胆甾体中的非镜像对称分子或磁性系统中的反对称自旋交换所具有,从而导致 Dzyaloshinskii-Moriya 自旋相互作用。最近,据报道,将承载 skyrmion 的磁体类型扩展到没有 Dzyaloshinskii-Moriya 自旋相互作用的系统14,15。然而,在这些系统中调整 skyrmion 手性的可能性仍是一个悬而未决的问题。虽然铁电材料中不存在预定义的手性对称性,但最近发现它们具有丰富的手性拓扑激发,包括布洛赫畴壁16-19,具有 skyrmion 结构的无芯涡旋20-22,单个 skyrmion 23,24,skyrmion 晶格 25 和 Hopfion 26。铁电体的一个显著特征是,当去极化电荷 ρ = ∇⋅ P 重排以降低它们的相互作用能时,由于限制和去极化效应的特定相互作用导致自发对称性破缺,从而出现手性,导致极化发生手性扭曲。重要的是,不同的手性(“左”态和“右”态)在能量上是简并的,因此可以互相切换。然而,执行这种手性切换是一项挑战,因为可以作为控制参数的基本场具有非手性性质。我们发现,由于去极化效应会导致大量拓扑激发,因此铁电纳米点可以提供丰富的相图,并且我们证明铁电纳米点包含极化 skyr-mions。特别是,我们设计了一个系统,其中可以通过施加电场来实现相反手性之间的受控切换。
与电磁(EM)波相互作用时,具有亚波长度的结构表现出异常的行为,可以用于多种新型应用。特别是,当金属表面异常之间的相互作用与入射光之间的相互作用导致表面浓缩的evaneScent波波激发称为表面等离子体(SPS)时,就会产生这种行为。1,2 SP是集体表面电荷振荡,该振荡在金属界面上传播,并具有超出衍射极限的字段实现。3–6手性结构是那些通过任何类型的旋转都无法与镜像叠加的那些结构。7,8这些结构表现出光学活性,即当左圆极化(LCP)或右圆极化(RCP)光的光发射时,具有不同的光学响应。与自由空间的光模式相反,等离子波对2D手性敏感。9–11表现出与偏光光相互作用的手性纳米结构在提高光谱特性的敏感性方面起着至关重要的作用。12,13可以通过代表RCP和LCP状态与波长之间的传递或吸收差的圆形二色性(CD)来表达光学活性。可以在天然手性材料(包括糖溶液和石英晶体)中找到光活性。14,15最近,已经表明,手性超材料在控制和操纵光的极化状态方面具有非凡的能力。例如,平面性手性结构的2D阵列,例如γ形金属纳米粒子,前后后背对称性
摘要:通过膦配体将金属配合物与其磷酸反离子连接,为非对称反离子导向催化 (ACDC) 提供了一种新策略。一种简单、可扩展的合成路线可以得到具有手性磷酸功能的膦的金 (I) 配合物。该配合物产生一种催化活性物质,阳离子 Au(I) 中心和磷酸反离子之间具有前所未有的分子内关系。串联环异构化/亲核加成反应展示了将催化剂的两种功能连接在一起的好处,通过在异常低的 0.2 mol % 催化剂负载下实现高对映选择性水平(高达 97% ee)。值得注意的是,该方法还与无银方案兼容。■ 简介
本调查为移动机械手性能测量领域的研究提供了基础,与其他移动机械手研究领域相比,该领域的研究文章相对较少。调查提供了移动机械手研究的文献综述,并提供了实验应用示例。调查还提供了一份详尽的规划和控制参考文献清单,因为这是移动机械手的主要研究重点,也是系统性能测量的因素。然后,调查回顾了移动机器人、机械臂和移动机械手的性能指标以及测量其性能的系统,包括通过动态运动跟踪系统的机床测量系统。最后,调查包括一个关于机器人、移动机器人和移动机械手性能测量研究的部分,从校准、标准和移动机械手工件开始,这些工件正在考虑用于评估移动机械手的性能。
手性、量子力学和生物决定论 PCW Davies 澳大利亚天体生物学中心 麦考瑞大学,新南威尔士,澳大利亚 2109 和亚利桑那州立大学,邮政信箱 876505,坦佩,AZ 85287-6505 摘要 天体生物学的目标就是发现第二个独立于地球生命而从头出现的生命样本(而不是通过胚种论过程与地球生命拥有共同起源的外星生命)。然后,就有可能将生物学中符合规律和预期的方面与偶然和偶然的方面区分开来,从而解决自然法则是否本质上对生物友好的问题。流行的假设是生命是物理和化学的几乎不可避免的产物,因此在宇宙中广泛存在,这被称为生物决定论。生物决定论是否正确仍是一个悬而未决的问题,因为基础物理学中几乎没有支持它的直接证据。同手性是已知生命的深层属性,为偶然性与规律性或偶然性与必然性之间的相互竞争思想提供了一个重要的测试案例。可以想象,手性特征是由基础物理学通过破坏宇称的弱相互作用和电磁相互作用的混合印刻在生命上的。如果是这样,同手性将是普遍的和有规律的。另一方面,它可能是偶然的结果:前生物阶段的随机分子事故。如果后一种解释是正确的,我们可以预期,即使第二个生命样本在基本生物化学上与已知生命相似,它也可能具有相反的手性特征。因此,在生物决定论方面,手性和生物发生之间存在着一种奇怪的正相关关系。如果生命的手性特征是偶然的产物,我们可能希望发现“镜像生命”(即具有相反手性特征的生物)作为第二次起源的证据,后者将证明生命从非生命中出现是准确定性的。另一方面,如果手性特征是由基础物理学决定的,那么确定外星生命的独立起源可能要困难得多,因为外星生命的生化组成与已知生命相似。在继续通过实验寻找第二个生命样本(可能是通过检测手性“异常”)的同时,可以进行一些理论研究以缩小选择范围。手性决定论本质上是一个量子过程。有迹象表明量子力学在生物学中起着关键作用,但这一说法仍然存在争议。在这里,我回顾了一些关于生物学量子方面的证据。我还总结了一些建议,通过寻找地球上多个起源事件的证据来测试生物决定论,并识别现存的“外星微生物”——从熟悉生命的独立起源中进化而来的微生物。关键词:生物物理学,同手性、量子力学、生物决定论 1. 偶然性和必然性 生物学史上的一个里程碑事件是雅克·莫诺出版了他的奠基之作《偶然性和必然性》1 。在这本书中,莫诺指出,生物体的形成部分是由自然法则决定的,部分是由偶然事件或应急事件决定的。也就是说,生物体的某些特征在某种意义上是宇宙性质预先决定的、基本的和不可避免的,而其他特征则纯属偶然和附带的。问题是要知道哪个是哪个。鉴于我们只有一个生命样本可供研究,因此很难将必然性和偶然性区分开来。天体生物学的主要动机当然是发现第二个生命样本,这将有助于我们识别基本和普遍特征,并将它们与特定和偶然特征区分开来。在没有第二个生命样本的情况下,关于偶然性和必然性的相对组合产生分歧的范围很大。因此,莫诺德认为,生命绝大部分是偶然的产物,斯蒂芬·杰伊·古尔德也持同样的观点,他认为,即使是智力等基本特征也纯粹是偶然的。另一方面,