扩散模型在图像生成中表现出了前所未有的ca。然而,它们从原始训练集中纳入并扩大了数据偏差(例如性别,年龄),从而限制了产生的IMEG的多样性。在本文中,我们在基于图像集的重新函数的指导下,使用增强学习(RL)提出了一种面向多样性的细调方法(RL)。具体而言,所提出的奖励函数(表示为多样性奖励),利用一组生成的信息来评估当前生成分配W.R.T.的覆盖范围。参考分布,由一组无偏见的图像表示。建立在分布差异估计的概率方法的基础上,差异奖励可以有效地用一小部分图像来测量相对分布差距。我们进一步将扩散过程作为多步决策问题(MDP),并通过最大化多样性奖励来应用策略梯度方法来微调扩散模型。在放样后选择任务上验证了奖励,其中根据多样性奖励值选择了最多样化的图像的子集。我们还展示了我们的RL微调框架的有效性,可以通过不同类型的扩散模型(包括班级条件模型和文本条件模型,例如stablediffusion)增强图像生成的多样性。
3D人姿势估计(3D HPE)任务使用2D图像或视频来预测3D空间中的人类关节坐标。尽管最新的基于深度学习的方法取得了进步,但它们主要忽略了可访问的文本和自然可行的人类知识的能力,而错过了有价值的隐性监督,以指导3D HPE任务。此外,以前的努力经常从整个人体的角度研究这项任务,从而忽略了隐藏在不同身体部位的细粒度指导。为此,我们基于3D HPE的扩散模型(名为FinePose)提出了一个新的细粒及时驱动的DeNoiser。它由三个核心块组成,增强了扩散模型的反向过程:(1)通过耦合辅助辅助文本和可学习的提示以模拟隐式指南的耦合知识,并通过耦合的辅助辅助文本和自然可行的零件知识,可以通过耦合的辅助辅助文本和自然可行的零件知识来构建精细的部分零件感知的提示。(2)Fine-
现有的文本视频检索解决方案本质上是侧重于最大程度地提高条件可能性的模型,即P(候选人|查询)。虽然很简单,但这种事实上的范式却忽略了基本的数据分布p(查询),这使得识别出分布数据的挑战。为了解决这一限制,我们从生成观点创造性地解决了此任务,并将文本和视频之间的相关性建模为其关节概率P(候选人,查询)。这是通过基于扩散的文本视频检索框架(扩散-RET)来完成的,该框架将检索任务建模为从噪声中产生关节分布的过程。在训练过程中,从发电和犯罪的角度优化了Diffusionret,其发电机通过生成损失优化,并且具有对比度损失的训练的特征提取器。以这种方式,diffusionret巧妙地杠杆化了生成和歧视方法的优势。在五个常用的文本检索基准测试中进行了广泛的实验,包括MSRVTT,LSMDC,MSVD,ActivityNet字幕和DIDEMO,并具有出色的性能,证明了我们方法的效果。更加谨慎,没有任何修改,diffusionret甚至在外域检索设置中表现良好。我们认为这项工作带来了对相关领域的基本见解。代码可从https://github.com/jpthu17/diffusionret获得。
使用扩散模型进行图像修复通常使用预条件模型(即针对绘画任务进行微调的图像条件模型)或后条件模型(即在推理时重新用于绘画任务的非条件模型)。预条件模型在推理时很快,但训练成本极高。后条件模型不需要任何训练,但在推理过程中很慢,需要多次前向和后向传递才能收敛到理想的解决方案。在这里,我们推导出一种不需要昂贵训练但推理速度很快的方法。为了解决昂贵的推理计算时间,我们在潜在空间而不是图像空间上执行前向-后向融合步骤。这是通过扩散过程中新提出的传播模块解决的。在多个领域进行的实验表明,我们的方法达到或改善了状态
最近,扩散模型 (DM) 已应用于磁共振成像 (MRI) 超分辨率 (SR) 重建,并表现出令人印象深刻的性能,尤其是在细节重建方面。然而,当前基于 DM 的 SR 重建方法仍然面临以下问题:(1)它们需要大量迭代来重建最终图像,效率低下且消耗大量计算资源。(2)这些方法重建的结果通常与真实的高分辨率图像不一致,导致重建的 MRI 图像出现明显失真。为了解决上述问题,我们提出了一种用于多对比 MRI SR 的有效扩散模型,称为 DiffMSR。具体而言,我们在高度紧凑的低维潜在空间中应用 DM 来生成具有高频细节信息的先验知识。高度紧凑的潜在空间确保 DM 只需要几次简单的迭代即可产生准确的先验知识。此外,我们设计了 Prior-Guide Large Window Transformer (PLWformer) 作为 DM 的解码器,它可以扩展感受野,同时充分利用 DM 产生的先验知识,以确保重建的 MR 图像保持不失真。在公共和临床数据集上进行的大量实验表明,我们的 DiffMSR 1 优于最先进的方法。
通过利用量化误差和加性噪声之间的相似性,可以通过使用扩散模型“ denoise”量化引入的伪影来构建基于扩散的图像压缩编解码器。但是,我们确定了这种方法中的三个差距,从而导致量化的数据排除在扩散模型的分布之外:噪声水平,噪声类型和由离散化引起的差距的差距。为了解决这些问题,我们提出了一个新型的基于量化的正向扩散过程,该过程是理论上建立的,并桥接了上述三个差距。这是通过经过精心量身定制的量化时间表以及对均匀噪声训练的扩散模型来实现的。与以前的工作相比,我们提出的架构也会产生一贯的现实和详细的结果,即使是在极低的比特率下,同时保持对原始图像的忠诚度。
在计算机图形学中创建高质量的材质是一项具有挑战性且耗时的任务,需要很高的专业知识。为了简化这个过程,我们引入了 MatFuse,这是一种统一的方法,它利用扩散模型的生成能力来创建和编辑 3D 材质。我们的方法整合了多种条件来源,包括调色板、草图、文本和图片,增强了创造可能性并对材质合成进行了细粒度的控制。此外,MatFuse 通过多编码器压缩模型的潜在操作实现了地图级材质编辑功能,该模型可以学习每个地图的解开的潜在表示。我们在多种条件设置下展示了 MatFuse 的有效性,并探索了材质编辑的潜力。最后,我们根据 CLIP-IQA 和 FID 分数定量评估生成材质的质量,并通过开展用户研究定性评估生成材质的质量。用于训练 MatFuse 的源代码和补充材料可在 https://gvecchio.com/matfuse 上公开获取。
扩散模型由于其众多优点已成为一种流行的图像生成和重建方法。然而,大多数基于扩散的逆问题解决方法仅处理二维图像,即使是最近发表的三维方法也没有充分利用三维分布先验。为了解决这个问题,我们提出了一种新方法,使用两个垂直的预训练二维扩散模型来解决三维逆问题。通过将三维数据分布建模为不同方向切片的二维分布的乘积,我们的方法有效地解决了维数灾难。我们的实验结果表明,我们的方法对于三维医学图像重建任务非常有效,包括 MRI Z 轴超分辨率、压缩感知 MRI 和稀疏视图 CT。我们的方法可以生成适合医疗应用的高质量体素体积。代码可在 https://github.com/hyn2028/tpdm 获得
计算机视觉技术在自动驾驶汽车的感知堆栈中起着核心作用。使用此类方法来感知给定数据的车辆周围环境。3D激光雷达传感器通常用于从场景中收集稀疏的3D点云。然而,根据人类的看法,这种系统努力鉴于那些稀疏的点云,因此很难塑造现场的看不见的部分。在此问题中,场景完成任务旨在预测LiDAR测量中的差距,以实现更完整的场景表示。鉴于最近扩散模型作为图像的生成模型的有希望的结果,我们建议将其扩展以实现单个3D LIDAR扫描的场景。以前的作品使用了从LiDAR数据提取的范围图像上使用扩散模型,直接应用了基于图像的扩散方法。差不多,我们建议直接在这些点上操作,并介绍尖锐的和降解的扩散过程,以便它可以在场景规模上有效地工作。与我们的方法一起,我们提出了正规化损失,以稳定在denoising过程中预测的噪声。我们的实验评估表明,我们的方法可以在单个LIDAR扫描中完成场景,作为输入,与最新场景完成方法相比,产生了更多详细信息的场景。我们认为,我们提出的扩散过程公式可以支持应用于场景尺度点云数据的扩散模型中的进一步研究。1