[FEL49] William Feller。“关于随机过程的理论,对应用的尤为参考”。:1949年。URL:https:// api。Spenticscholar.org/corpusid:121027442。[SE19] Yang Song和Stefano Ermon。“通过估计数据分布梯度来生成建模”。in:神经信息处理系统的进步32(2019)。[HJA20] Jonathan Ho,Ajay Jain和Pieter Abbeel。“降级扩散概率模型”。in:神经信息处理系统的进步33(2020),pp。6840–6851。[儿子+20] Yang Song等。“通过stochastic微分方程基于得分的生成建模”。in:arxiv预印arxiv:2011.13456(2020)。[DN21] Prafulla Dhariwal和Alexander Nichol。“扩散模型在图像合成上击败了gans”。in:神经信息过程的进步34(2021),pp。8780–8794。[Kin+21] Diederik Kingma等。“变化扩散模型”。in:神经信息处理系统的进步34(2021),pp。21696–21707。[HS22] Jonathan Ho和Tim Salimans。“无分类器扩散指南”。in:arxiv预印术:2207.12598(2022)。[CHI+23] Cheng Chi等。“扩散策略:通过行动扩散进行视觉策略学习”。in:arxiv预印术:2303.04137(2023)。
考虑图像𝑋。使用ℎℎ𝜃,或等效地𝜀 𝜀,𝑡,𝑡,𝑍image =𝑓𝑓𝐶=𝐶=∅=∅=∅=∅=∅=∅=∅=∅=∅=∅=∅=∅,及时运行ddim采样器,以生成𝑋𝑋𝑋𝑋,图图像。这个𝑋看起来像随机噪声,但它是一个非常特殊的噪声实例,因为从𝑋𝑋𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑇𝑇将生成𝑋。
自回旋模型(武器)被广泛地成为大型语言模型(LLMS)的基石。我们通过介绍LLADA挑战了这一概念,这是一种扩散模型,该模型在训练和监督的细调(SFT)范式下从头开始训练。llada通过向前数据掩盖过程和反向过程进行分散模型,该过程由香草变压器参数列出以预测掩盖的令牌。通过操作可能性结合的可能性,它为概率引发提供了一种限制的生成方法。在广泛的基准测试中,Llada表现出强大的可伸缩性,表现优于我们的自我建造的手臂基线。明显地,LLADA 8B具有强大的LLM,例如LLAMA3 8B在秘密学习中,并且在SFT之后,在诸如多转变型号之类的案例研究中表现出令人印象深刻的跟随能力。此外,Llada解决了诅咒,在逆转诗的完成任务中超过了GPT-4O。我们的发现将扩散模型建立为武器的可行且有前途的替代方案,挑战了上面讨论的关键LLM功能固有地与武器相关的假设。项目页面和代码:https://ml-gsai.github.io/llada-demo/。
我们提出了一类结构化扩散模型,其中将先前的分布选择作为高斯人的混合物,而不是标准的高斯分布。可以选择特定的混合高斯分布,以合并数据的某些结构化信息。我们制定了一个简单的实施训练程序,可以平稳地使用混合高斯作为先验。理论来量化我们提出的模型的好处,该模型与经典扩散模型相比。进行合成,图像和操作数据的数值实验以显示我们模型的比较优势。我们的方法证明对错误的特定方法是可靠的,特别是需要实时训练资源有限或更快培训的诉讼情况。
降解概率模型在机器学习中变得越来越重要,但尚未研究其量子对应物。在这项工作中,我们提出了生成差异模型的量子版本。在该算法中,人工神经网络被参数化的量子电路代替,以直接操纵量子状态。我们既提出完整的量子版本,也是该算法的潜在经典量词版本。在潜在模型中,参数化的量子电路是通过使用预训练的经典自动编码器获得的,以低维的数据表示训练。对于这两种模型,我们都展示了一种使用辅助量子位来调节输出分布的方法。已使用定性评估补充的定量指标对模型的性能进行了评估。对于潜在模型,我们显示了对实际量子硬件的简化版本的实现。NISQ设备上的执行允许在存在噪声的情况下评估算法的性能。