1 1非洲疼痛研究计划,麻醉和围手术医学系,神经科学研究所,开普敦大学,南非开普敦大学2 HIV镇2 HIV心理健康研究部,神经科学研究院,神经科学研究所,开普敦大学,开普敦大学,开普敦,开普敦大学,南非3号,伦敦市,伦敦,伦敦,伦敦,,开普敦大学,开普敦大学,开普敦大学,开普敦,伦敦,伦敦,伦敦,伦敦,伦敦,伦敦。 澳大利亚。 5光子学研究所,阿德莱德大学,南澳大利亚,澳大利亚。 6 Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa 7 Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa 8 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA 9 Department美国马萨诸塞州波士顿的哈佛医学院麻醉,围手术期和止痛药1非洲疼痛研究计划,麻醉和围手术医学系,神经科学研究所,开普敦大学,南非开普敦大学2 HIV镇2 HIV心理健康研究部,神经科学研究院,神经科学研究所,开普敦大学,开普敦大学,开普敦,开普敦大学,南非3号,伦敦市,伦敦,伦敦,伦敦,,开普敦大学,开普敦大学,开普敦大学,开普敦,伦敦,伦敦,伦敦,伦敦,伦敦,伦敦。 澳大利亚。5光子学研究所,阿德莱德大学,南澳大利亚,澳大利亚。 6 Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa 7 Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa 8 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA 9 Department美国马萨诸塞州波士顿的哈佛医学院麻醉,围手术期和止痛药5光子学研究所,阿德莱德大学,南澳大利亚,澳大利亚。6 Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa 7 Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa 8 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA 9 Department美国马萨诸塞州波士顿的哈佛医学院麻醉,围手术期和止痛药
微生物群移植是管理植物性疾病的强大工具。这项研究研究了微生物群移植对棉叶毛皮疾病(CLCUD)抗性的影响,该物种长度良好,但对生物胁迫的敏感性很高。分析了抗clcud抗性物种gossypium arboreum的v3-v4 16S rRNA基因扩增子,来自根际和腓骨层的微生物馏分以及易感棉花品种。已经确定了与疾病抗性相关的独特细菌分类群。进行了种间和种内微生物群移植,然后进行CLCUD发病率分析。可以看出,从G. arboreum fdh228中移植的根际微生物群体显着抑制了G. hirsutum品种中的Clcud,表现优于外源水杨酸的施用。虽然浮游移植也降低了疾病的发生,但它们的效率不如根际移植。差异表达分析DESEQ2用于识别与Clcud抑制相关的关键细菌属,包括pseudoxanthomonas和stenotrophomonas在G. arboreum fdh228的根际中。功能途径分析揭示了耐受物种中应力反应和代谢的上调。转录组学揭示了与蛋白质磷酸化和种间根际微生物群移植中有关的基因上调。这项研究强调了微生物群移植是一种可持续的方法,用于控制CLCUD以及有助于Clcud耐药性的特定微生物和遗传机制。
SARS-COV-2使用宿主细胞膜受体血管紧张素转化酶2(ACE2)锚定其尖峰蛋白,并由宿主膜膜蛋白酶促进膜融合蛋白。最近的研究表明,跨膜丝氨酸蛋白酶2(TMPRSS2)是一种蛋白酶,该蛋白酶在先前的冠状病毒感染中相似,严重的急性呼吸综合征(SARS)和中东呼吸道综合征(MER)和中东呼吸道综合征(MERS),负责SARS-Cov-2-Cov-2-Cov-2型宿主的蛋白质,启用了Enaber Face face face facike ofer face facie face face face face face facike fir facie fir face facike ofer face face face face facike od sy facike fir。tmprss2在包括胃肠道,呼吸和遗传系统在内的不同部位的上皮细胞中表达。(SARS-COV-2的E感染部位与ACE2和TMPRSS2的共表达位点相关。此外,感染率的年龄,性别和合并症相关的变化与这些组中TMPRSS2的表达速率相关。(ESE发现提供了有效的理由,认为抑制TMPRSS2可以在降低病毒的细胞进入,最终影响感染率和病例严重性时具有有益的影响。使用常规和计算方法,正在进行一些药物开发研究,以开发蛋白酶的潜在抑制剂。在应用这种疗法之前,必须完全了解TMPRSS2的生物学作用。
*通讯作者。地址:1515 Holcombe Boulevard,第432单元,德克萨斯州休斯敦77030。电话: +1-713-792-6363;传真:+1 -713-792-1220。 fmjohns@mdanderson.org。†列出的隶属关系是在进行本研究时。Vaishnavi Sambandam现在在美国马里兰州罗克维尔的Champions Oncology Inc.Anne M. Fernandez现在在美国德克萨斯州休斯敦的Celltex Therapeutics Corporation工作。Hongyun Zhao现在在中国广东的Sun Yat-Sen大学癌症中心工作。 Author contributions: Conceptualization: PAS, VS, MJF, FMJ Methodology: PAS, VS, MJF, FMJ Formal analysis: PAS, LS, QW, JW Investigation: PAS, AMF, VS, HZ, TM, KMA Writing – original draft: PAS, VS, TM, FMJ Writing – review & editing: PAS, SG, MJF, FMJ Visualization: PAS, AMF,VS,LS,QW项目管理:MJF,FMJ监督:FMJ资金获取:MJF,FMJHongyun Zhao现在在中国广东的Sun Yat-Sen大学癌症中心工作。Author contributions: Conceptualization: PAS, VS, MJF, FMJ Methodology: PAS, VS, MJF, FMJ Formal analysis: PAS, LS, QW, JW Investigation: PAS, AMF, VS, HZ, TM, KMA Writing – original draft: PAS, VS, TM, FMJ Writing – review & editing: PAS, SG, MJF, FMJ Visualization: PAS, AMF,VS,LS,QW项目管理:MJF,FMJ监督:FMJ资金获取:MJF,FMJ
2018 WHA解决方案(71.8)关于辅助技术,其次是2022年,《联合国儿童基金会》和《联合国儿童基金会全球辅助技术报告》以及其他全球倡议的报告增加了人们对辅助技术的认识和兴趣,作为健康,教育,劳动,人道主义者和其他领域的关键问题。取得了进步,以缩小当前访问差距,包括全球商品和国家一级活动的增长。但是,与日益增长的需求相比,进步的速度,尤其是在低收入和中等收入国家中的速度。在决策者和倡导者中,关于如何实现有效访问辅助技术的倡导者,这也缺乏了解,这是对各种服务用户的需求,提供服务的特定和多样化环境以及数字卫生技术等新兴机会的潜力。
目的:修饰有功能性配体的纳米粒子 (NP) 是癌症诊断和治疗的有希望的候选物。然而,许多研究表明,NP 上化学偶联的靶向部分在生物环境中会失去靶向能力,因为它们被“蛋白质冠”屏蔽或覆盖。在此,我们构建了一个功能性磁小体,即使在存在蛋白质冠的情况下,它也能识别和靶向癌细胞。方法:从趋磁细菌 M. gryphiswaldense (MSR-1) 中提取磁小体 (BMP),并通过亲和体 (RA) 和戊二醛 (GA) 修饰曲妥珠单抗 (TZ)。工程化的 BMP 被称为 BMP-RA-TZ 和 BMP-GA-TZ。通过 ELISA 检测它们结合 HER2 的能力,使用 LC-MS 分析血浆冠蛋白的数量。通过共聚焦激光扫描显微镜和流式细胞术证明了靶向 SK-BR-3 的效率。结果:两种工程化 BMP 每毫克 BMP 中含有高达约 0.2 毫克 TZ,而与 BMP-RA-TZ 结合的 HER2 数量是与 BMP-GA-TZ 结合的 HER2 数量三倍。与正常人血浆或补充有 IgG 的血浆孵育后,与含 RA-TZ 的 BMP 相比,含 GA-TZ 的 BMP 具有更大的水合半径和更多的表面蛋白。含 TZ 的 BMP 均可靶向并内化在 HER2 过表达的乳腺癌细胞系 SK-BR-3 中;然而,它们的靶向效率差异很大:含 RA-TZ 的 BMP 为 50-75%,含 GA-TZ 的 BMP 为 9-19%。将 BMP 与血浆 (100%) 和癌细胞孵育以模拟人类体内环境。在此环境下,SK-BR-3 对 BMP-RA-TZ 的摄取效率达到近 80%(略低于与 BMP-RA-TZ 直接相互作用),而 BMP-GA-TZ 的摄取效率为 <17%。结论:RA 支架的应用促进和定向靶向配体的排列,并降低冠蛋白的屏蔽作用。该策略提高了 NP 在模拟体内环境下的靶向能力和药物递送。关键词:亲和体、蛋白冠、磁小体、人表皮生长因子受体 2、HER2
肿瘤进展主要依赖于血管供应,恶性组织内的血管生成活动促进了血管供应。非小细胞肺癌 (NSCLC) 是一种高度血管化的肿瘤,抑制血管生成被认为是一种有前途的治疗方法。十多年前,第一种抗血管生成药物被批准用于晚期 NSCLC 患者,然而,它们只产生了微不足道的临床益处。抗血管生成疗法仅显示出适度效果的原因包括高度适应性的肿瘤微环境 (TME) 以及对肿瘤血管系统了解较少的特征。如今,通过单细胞 RNA 测序 (scRNA-Seq) 和临床前观察对 NSCLC TME 进行深入表征的先进方法能够详细表征个体癌症状况,从而可以确定更个性化的血管生成抑制的新方面。此外,肿瘤血管本身由几种细胞亚型组成,它们与TME的其他细胞成分密切相互作用,并表现出不同的生物学功能,如免疫调节、增殖和细胞外基质的组织。利用这些新见解,可以开发包括化疗、抗血管生成和免疫疗法在内的联合方法,从而为非小细胞肺癌提供更具针对性的抗肿瘤治疗。最近,抗血管生成药物还被证明能诱导高内皮微静脉 (HEVs) 的形成,这对于三级淋巴结构的形成至关重要,也是触发抗肿瘤免疫的关键成分。在本综述中,我们将总结目前对肿瘤血管生成和相应的抗血管生成疗法的认识,以及有关肿瘤相关血管表征的新方面和由此产生的非小细胞肺癌抗血管生成疗法和血管抑制的新策略。我们将进一步讨论为什么抗血管生成疗法成为联合疗法的有趣骨干策略,以及如何以更加个性化的肿瘤导向方式进一步开发抗血管生成方法,重点关注 NSCLC。
具有原子厚度的二维材料通常比其散装对应物具有优越的可调性,对新型纳米技术显示出巨大的希望。在分层的过渡金属二核苷元素IRTE 2中表现出由电荷顺序诱导的复杂结构扭曲,导致其相应单层材料的应用产生困难。在这里,使用第一个原理计算,我们证明在IRTE 2单层表面沉积Na可以抑制结构变形以形成稳定的Nairte 2板。它自然会破坏反转对称性,以实现Rashba型自旋分裂以进行潜在的自旋应用。此外,引入的空的na频带和IRTE 2单层的价带可以通过垂直电场的应用来反转,从而实现了从正常绝缘体到拓扑绝缘子的量子相变。这样的电场控制拓扑相变是实现拓扑场效应晶体管的希望。这些发现不仅提供了一种可行的方法来稳定IRTE 2单层,而且还扩大了其在旋转和低衰减的托泊托管中的应用。
重要的安全信息(续)Tarpeyo的副作用是什么?(续)•肾上腺抑制:长时间服用Tarpeyo(长期使用)时,可能会发生肾上腺抑制。这是肾上腺没有产生足够类固醇激素的条件。肾上腺抑制的症状包括疲倦,无力,恶心和呕吐以及低血压。告诉您的医疗保健提供者,如果您承受压力,或者在用Tarpeyo治疗期间患有肾上腺抑制的任何症状•免疫抑制的风险:Tarpeyo削弱了您的免疫系统。服用削弱免疫系统的药物会使您更有可能感染。避免与Tarpeyo治疗期间患有感染性疾病(例如水痘或麻疹)的患者接触。如果您与任何有水痘或麻疹的人接触,请立即告诉您的医疗保健提供者。与您的医疗保健提供者有关适当的疫苗接种计划
摘要:对绿色氢的需求引起了人们对氧气进化反应催化剂中使用的虹膜的可用性的关注。我们借助机器学习辅助计算管道识别催化剂,该计算管道接受了36,000多种混合金属氧化物的训练。管道准确地预测了来自未删除的结构的Pourbaix分解能(G PBX),平均绝对误差为每个原子77 MeV,使我们能够在酸性条件下筛选2070个新的金属氧化物。搜索将RU 0.6 Cr 0.2 Ti 0.2 O 2识别为具有提高耐用性的候选者:实验,我们发现它在100 mA cm-2时提供了267 mV的超电势,并且它在此电流密度以上并在200 h以上运行,并表现出超过200 h的速率增加25μVH-h-1。表面密度的功能理论计算表明,Ti增加了金属 - 氧的共价,这是提高稳定性的潜在途径,而CR降低了HOO *形成率确定的步骤的能量屏障,与RUO 2相比,活动增加了活性,并在100 mA CM-2下将超电位降低40 mV,同时维持稳定性。原位X射线吸收光谱和EX PTYCHOPHICONGE-扫描X射线显微镜显示反应过程中可稳态结构的演变,与RUO 2相比,RU质量溶解减慢了20倍,并抑制了晶格氧的参与度> 60%。■简介