mAb,单克隆抗体;VEGF (R),血管内皮生长因子(受体);CRC,结直肠癌;NSCLC,非小细胞肺癌;RCC,肾细胞癌;BC,乳腺癌;EGF(R),表皮生长因子(受体);Fit-3,fms 样酪氨酸激酶 3;GIST,胃肠道间质瘤;CML,慢性粒细胞白血病,HCC,肝细胞癌;HER-2,人表皮生长因子受体 2;MTKI,多靶点激酶抑制剂;KI,激酶抑制剂;K-ras,Kirsten 大鼠肉瘤 2 病毒致癌基因同源物;MCL,套细胞淋巴瘤;mTOR,雷帕霉素哺乳动物靶点;PDGF,血小板衍生的生长因子;RET,转染过程中重排的激酶; TKI,酪氨酸激酶抑制剂;* 丝氨酸/苏氨酸激酶。
在套细胞淋巴瘤 (MCL) 中,巨噬细胞在肿瘤微环境 (TME) 中的作用最近受到关注,因为它们会影响预后和治疗反应。尽管 MCL 肿瘤组织中的巨噬细胞绝对数量很少,但最近的研究结果显示巨噬细胞水平与预后之间存在关联,这与其他淋巴瘤亚型中观察到的趋势一致。M2 样巨噬细胞由 CD163 等标记物识别,有助于血管生成和抑制免疫反应。接受化学免疫疗法和靶向治疗的 MCL 患者的临床试验强调了高水平 M2 样巨噬细胞的不利影响。来那度胺等免疫调节药物可降低 MCL 相关 CD163 + 巨噬细胞的水平并增强巨噬细胞的吞噬活性。类似地,针对 CD47“别吃我”信号的临床方法与抗 CD20 抗体利妥昔单抗相结合,可增强巨噬细胞活性和对 MCL 肿瘤细胞的吞噬作用。嵌合抗原受体 (CAR) T 细胞等细胞疗法已显示出良好的前景,但仍存在各种挑战,这导致人们对 CAR-巨噬细胞 (CAR-M) 产生了潜在兴趣。当巨噬细胞被招募到 TME 时,它们具有吞噬功能和对微环境变化的反应性等优势,表明当 CAR T 细胞疗法在复杂的 MCL 治疗环境中失败时,它们有可能成为可操纵和可诱导的替代方案。
简单总结:谷氨酰胺对人体功能至关重要,在癌症代谢中起着关键作用,因为它会影响肿瘤生长。然而,癌细胞复杂的适应性代谢动力学引发了人们对谷氨酰胺拮抗策略在阻止肿瘤生长方面可能存在的局限性的担忧。同样,虽然补充谷氨酰胺在支持癌症患者方面显示出希望,但需要仔细考虑以解决与正在进行的治疗可能产生的相互作用以及对无意中刺激肿瘤生长的担忧。最近的研究揭示了谷氨酰胺对癌细胞表观遗传调控和增强抗癌免疫功能的影响,为潜在的治疗进展提供了宝贵的见解。了解谷氨酰胺干预的复杂性和挑战对于优化其在癌症治疗和患者健康方面的潜在益处至关重要。
• 蒽环类抗生素 例如表柔比星、丝裂霉素 • 铂化合物 例如顺铂、卡铂 • 紫杉烷 例如紫杉醇、多西他赛 • 长春花生物碱 例如长春新碱、长春花碱 • 抗代谢物 例如卡培他滨、5FU、阿糖胞苷 • 烷化剂 例如苯丁酸氮芥、环磷酰胺 • 拓扑异构酶 1 例如伊立替康 • 拓扑异构酶 2 例如依托泊苷 • 其他 例如天冬酰胺酶,砷
简介:肺癌的特征是肺组织内细胞增殖不受控制,是全球癌症相关死亡的主要原因。传统药草荜茇因其有据可查的抗癌特性而成为肿瘤学研究的重要竞争者,表明其具有开发新疗法的潜力。方法:本研究采用网络药理学和组学方法,通过识别荜茇的生物活性成分及其相应的分子靶点,阐明荜茇的抗肺癌潜力。结果:通过全面的文献综述和综合药用植物化学和治疗学数据库 (IMPPAT),我们从荜茇中鉴定出 33 种生物活性分子。随后,使用 SwissTargetPrediction、SuperPred 和 DIGEP-Pred 等工具进行的分析有助于分离出 676 个潜在靶点,其中 72 个与通过治疗靶点数据库 (TTD)、人类在线孟德尔遗传 (OMIM) 和 GeneCards 等数据库确定的 666 个肺癌相关遗传标记相交。通过蛋白质-蛋白质相互作用 (PPI) 网络、基因本体论、通路分析、箱线图和总体生存指标的进一步验证强调了 7-表-eudesm-4(15)-ene-1 β、去甲氧基哌拉汀、3,4,5-三甲氧基肉桂酸甲酯、6-α-二醇和马兜铃二酮等化合物的治疗潜力。值得注意的是,我们的研究结果再次证实了肺癌基因(如 CTNNB1、STAT3、HIF1A、HSP90AA1 和 ERBB2)的重要性,这些基因对各种细胞过程至关重要,在癌症发生和发展中起着关键作用。分子对接评估显示 6-α-二醇与 HIF1A 之间存在明显的亲和力,强调了它们作为肺癌治疗剂的潜力。结论:这项研究不仅突出了 P. longum 的生物活性化合物,还加强了其抗癌机制的分子基础,为未来的肺癌治疗铺平了道路。
许多化学疗法药物直接或间接靶向DNA或与DNA相关的过程,例如复制,核苷酸合成或DNA拓扑的维持(Box 1和图1,密钥图)。据信,由于DNA修复缺陷以及有丝分裂细胞无法处理DNA损伤,肿瘤细胞对靶向DNA的药物更敏感。当癌细胞比健康细胞更快时,这会自动诱导治疗窗口[4]。尽管有一部分癌症,例如小儿恶性肿瘤,突变负担低,并且相对完整的DNA修复途径[5,6],这种信念仍然存在。虽然大多数童年癌症可以通过化学疗法有效地治疗[7],但小儿癌症患者通常具有显着缩短的寿命和较低的强烈化学疗法周期的生活质量[8]。
在肿瘤研究领域的引言中,威廉·库利(William Cooley)是第一个证明微生物产物(特异性化脓性链球菌和铜质马斯科斯链球菌)抗肿瘤作用的人。1肠道微生物群代表一个由各种共生微生物组成的生态系统,这些微生物代谢了残留食物,肠道分泌物和消化汁和脱落结肠细胞。在大肠中,蛋白水解发酵随着饮食蛋白的高摄入而增加,从而产生诸如酚类化合物,胺,氨,N-硝基化合物和吲哚的物质产生。这些化合物可以对上皮细胞的分化和增殖产生致癌作用。2,3微生物群还影响许多人类基因的表达。例如,树突状细胞和巨噬细胞中的双歧杆菌,乳酸菌和大肠杆菌的特异性菌株会影响粘蛋白基因的表达,Toll样受体(TLR)信号传导,以及caspase表达,从而调节免疫活性和凋亡。共生细菌与免疫细胞之间的相互作用在促炎基因,原始基因,抗炎基因和肿瘤抑制基因之间建立了平衡。3-5 an
癌症是全球范围内导致死亡的主要原因之一,让许多人苦不堪言。有许多常规治疗方法,如化疗、放疗、手术、激素治疗等。但这些治疗方法有许多有害的副作用,限制了常规治疗的疗效。人们广泛研究了各种植物中发现的许多植物化学物质的抗癌特性。阿育吠陀和顺势疗法药物中存在的许多植物化学物质也被确定为良好的抗癌药物。因此,研究人员有很多机会从多个国家的药用植物中开发有效的抗癌药物。研究人员还需要了解植物化学物质的作用,以开发更有效的抗癌药物。本综述系统地讨论了不同类别植物化学化合物的抗癌活性。关键词:抗癌、植物化学物质、香豆素衍生物、喹啉和异喹啉衍生物、大环化合物、长春花碱。
测序和转录组学的进步使得通过共表达分析可以发现酶,其中候选基因通过组织表达模式与已知途径酶的相似性来识别 — — 最近在 C.roseus 和 Podophyllumpeltatum 中的发现证明了这一点 [ 4 , 5 ]。自组织映射等机器学习方法进一步优化了候选基因 [ 6 ]。这些方法,加上对植物体内生物合成定位的更深入理解,以及单细胞代谢组学等技术的发展,进一步改善了候选基因的选择,加速了酶的发现 [ 7 ]。借助基于 OMIC 的工具(如 plantiSMASH)识别物理基因簇有助于阐明缺失的生物合成酶,如那可丁和长春花碱途径中的酶 [ 8–10 ]。然而,这种方法是有限的,因为许多植物生物合成途径几乎没有或没有基因聚集,如喜树碱生物合成途径[11]。基于同源性的克隆可以加速发现与已知生物合成酶具有直系同源功能的基因,例如在 Tabernanthe iboga 的 ibogaine 生物合成途径中鉴定出 C. roseus 脱羧酶直系同源物[12]。然而,途径的复杂性往往需要采用组合方法,例如 Gelsemiumsempervirens 氧化吲哚途径的发现[13]。